

Book of Proceedings

from the Second International Scientific Conference GIRR 2024

"GLOBAL CHALLENGES THROUGH THE PRISM OF RURAL DEVELOPMENT IN THE SECTOR OF AGRICULTURE AND TOURISM"

Šabac, Serbia 10th May, 2024 "GLOBAL CHALLENGES THROUGH THE PRISM OF RURAL DEVELOPMENT IN THE SECTOR OF AGRICULTURE AND TOURISM"

Book of Proceedings

Publisher:

Academy of Applied Studies Šabac Dobropoljska 5, Šabac (Serbia) Tel: +381 15-342-171 Institut of Field and Vegetable Crops Maksima Gorkog 30, Novi Sad (Serbia) Tel: +381 21 48-98-100

For the Publisher:

Svetlana Karić, PhD Jegor Miladinović, PhD

Editors:

Jelena Ignjatović, PhD Aleksandra Đorđević, Msc Stefan Marković, Msc

Technical editors:

Damir Pajić, professional IT engineer Boško Sinobad, professional IT engineer

Electronic edition

2024

ISBN 978-86-80417-96-7

CO-ORGANISATION

Adriatic University Bar

Faculty of Management Herceg Novi

University Bijeljina

Faculty of Hotel Management and Tourism, Vrnjačka Banja

CO-ORGANISATION

Institute for Vegetable Crops Smederevska Palanka

Institute of Agricultural Economics, Belgrade

Faculty of Agronomy Čačak

Faculty of Biofarming Bačka Topla

SCIENTIFIC BOARD

Svetlana Karić, PhD, Professor of Applied Studies Academy of Applied Studies Šabac, Šabac, Serbia

Jegor Miladinović, PhD, Full Professor Institute of Field and Vegetable Crops Novi Sad, Serbia

Ljiljana Rodić-Wiersma, PhD, Full Professor Delf Univerity of Tehnology, European Commission the Hague, South Holland, Netherlands

Natalia Vnukova, PhD, Full Professor Chair holder of the Ecology Department and UNESCO Chair in Environmentally Clean Technologies (409) Kharkiv National Automobile and Highway University, Ukraine

Katarzyna Strzała-Osuch, PhD, Full Professor Powiślański University in Kwidzyn, Poland

Metka Hudina, PhD, Full Professor University of Ljbljana, Republic of Slovenia

Gabi Dimitresku, PhD, Full Professor University of Natural Sciences, Timisoara, Romania

Maja Ignjatov, PhD, Principal Research Fellow Institute of Field and Vegetable Crops Novi Sad, Serbia

Sipos Péter, PhD, Full Professor University of Debrecen, Debrecen, Hungary

Aleksandr M. Semenov, PhD, Leading Research Scientist Biological Faculty, Moscow State University them MV Lomonosov, Moscow, Russia

Malgorzata Korzeniowska, PhD, Full Professor Faculty of Biotechnology and Food Science, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland

Violeta Ivanova-Petropulos, PhD, Full Professor University "Goce Delčev", Štip, North Macedonia

Pakeza Drkenda, PhD, Full Professor Faculty of Agriculture and Food Sciences, University of Sarajevo, Bosnia and Herzegovina

Branislav Drašković, PhD, Full Professor Universtity of East Sarajevo, Faculty of Agriculture, East Sarajevo, Bosnia and Herzegovina

Drago Cvijanović PhD, Full Professor Faculty of Hotel Management and Tourism in Vrnjačka Banja, University of Kragujevac

Radovan Pejanović, PhD, Full Professor Faculty of Agriculture, University of Novi Sad **Goran Maksimović**, PhD, Full Professor Faculty of Agriculture, University of Priština

Milka Stijepić, PhD, Professor of Applied Studies Medical School, Prijedor, Bosnia and Herzegovina

Tatjana Popović Milovanović, PhD, Principal Researchc Fellow, Institute for Plant Protection and Environment, Belgrade, Serbia

Irena Petrušić, PhD, Associate Professor Faculty of Management, Herceg Novi, Montenegro

Garegin Hamabardzumyan, PhD, Associate Professor, Armenian Nacional Agrarian University, Armenia

Emina Karo, PhD, Associate Professor Faculty of Low University of New York, Tirana, Albania

Tudor Castravet, PhD, Associate Professor State Pedagogical University of Chisinau, Moldova

Adela Delalić, PhD, Associate Professor Faculty of Economics, University of Sarajevo, Bosnia and Herzegovina

Katalin Szendro, PhD, Associate Professor Institute of Agriculture and Food Economics, Hungarian University of Agricultural and life science, Kaposvár University, Kaposvár, Hungary

Irzada Taljić, PhD, Associate Professor Faculty of Agriculture and Food Sciences, University of Sarajevo, Sarajevo, Bosnia and Herzegovina

Jelena Ješić, PhD, Associate Professor, EDUCONS University, Sremska Kamenica, Serbia **Andrea Okanović**, PhD, Associate Professor Faculty of Technical Sciences, Novi Sad, Serbia

Azemina Mašović, PhD, Associate Professor FON University, Skoplje, North Macedonia **Dragan Dolinaj,** PhD, Associate Professor Department of Geography, Tourism and Hospitality, PMF Novi Sad, Serbia

Maida Mulić, PhD, Associate Professor Medical Faculty, University of Tuzla, Bosnia and Herzegovina

Diona Đurđević, PhD, Associate Professor, EDUCONS University, Sremska Kamenica, Serbia

Slavica Antunović, PhD, Assistant Professor University of Slavonski Brod, Slavonski Brod, Croatia

Nikoleta Lugonja, PhD, Associate Research Professor University of Belgrade, Institute of Chemistry, Tecnology and Metallurgy, National Institute of Republic of Serbia, Serbia **Đorđe Krstić**, PhD, Associate Professor Faculty of Agriculture, Novi Sad, Serbia

Teofil Gavrić, PhD, Associate Professor Faculty of Agriculture and Food Sciences, University of Sarajevo, Bosnia and Herzegovina

Gordan Mimić, PhD, Senior Research Associate BioSense institute, Novi Sad, Serbia **Vladimir Aćin**, PhD, Senior Research Associate Institute of Field and Vegetable Crops Novi Sad, Serbia

Renata Iličić, PhD, Senior Research Associate Faculty of Agriculture, Novi Sad, Serbia **Dejan Kojić**, PhD, Assistant Professor PIM University, Banja Luka, Bosnia and Herzegovina

Osman Musić, PhD, Assistant Professor Faculty of Agriculture and Food Sciences, University of Sarajevo, Bosnia and Herzegovina

Teuta Benković Lačić, PhD, Assistant Professor University of Slavonski Brod, Slavonski Brod, Croatia

Marija Bajagić, PhD, Assistant Professor Faculty of Agriculture, Universty of Bijeljina, Bosnia and Herzegovina

Gordana Vladisavljević, PhD, Assistant Professor EDUCONS University, Sremska Kamenica, Serbia

Simonida Vukadinović, PhD, Assistant Professor EDUCONS University, Sremska Kamenica, Serbia

Miloš Rajković, PhD, Research Asociate Institute for the Study of Medicinal Plants "Dr. Josif Pančić", Belgrade, Serbia

Biljana Grujić Vučkovski, PhD, Senior Research Associate, Tamiš Research and Development Institute, Pančevo, Serbia

Aleksandra Ivetić, PhD, Research Assosiate, Institute for Science Application in Agriculture, Belgrade, Serbia

Marija Radojičić, PhD, Project Researcher Department of Zoology, Fisheries, Hydrobiology and Apiculture, Faculty of AgriSciences Mendel University in Brno, Brno, Czech Republic

Lilia Petriciuc, PhD, Lecturer State Pedagogical University of Chisinau, Moldova **Goran Jević**, PhD, Lecturer Academy of Applied Studies Belgrade, Belgrade, Serbia

Vilma Piroli, PhD, Lecturer University of Shkoder "Luigj Gurakuqi, Albania **Marijana Srećković,** spec.dr. med., Lecturer Academy of Applied Studies Šabac, Šabac, Serbia

Mihailo Ostojić, PhD, Academic, Developmental Academy of Agriculture of Serbia Nebojša Marković, PhD, Academic, Developmental Academy of Agriculture of Serbia Zorica Vasiljević, PhD, Academic, Developmental Academy of Agriculture of Serbia Ratko Kovačević, PhD, Academic, Developmental Academy of Agriculture of Serbia

ORGANIZATION COMMITTEE

• Jelena Ignjatović, PhD, Lecturer President of Organisation committee, Academy of Applied Studies Šabac, Šabac, Serbia

• Slobodan Vlajić, PhD, Research Associate Institute of Field and Vegetable Crops Novi Sad, Serbia

• Gordana Tamindžić, PhD, Senior Research Associate Institute of Field and Vegetable Crops Novi Sad, Serbia

• Vera Rašković, PhD, Professor of Applied Studies Academy of Applied Studies Šabac, Šabac, Serbia

• Nada Buzadžić Nikolajević, PhD, Professor of Applied Studies Academy of Applied Studies Šabac, Šabac, Serbia

Milan Blagojević, PhD, Senior Lecturer
 Academy of Applied Studies Šabac, Šabac, Serbia

Nemanja Stošić, PhD, Lecturer
 Academy of Applied Studies Šabac, Šabac, Serbia

• Milan Glišić, Phd, Lecturer Academy of Applied Studies Šabac, Šabac, Serbia

• Borislav Kolarić, Phd, Lecturer Academy of Applied Studies Šabac, Šabac, Serbia

• Tamara Stančetić, Msc. Assistant Academy of Applied Studies Šabac, Šabac, Serbia

• Aleksandra Đorđević, Msc. Assistant Academy of Applied Studies Šabac, Šabac, Serbia

• Stefan Marković, Msc. Assistant Academy of Applied Studies Šabac, Šabac, Serbia

• Nenad Pavlović, dipl.ing. Teaching Associate Academy of Applied Studies Šabac, Šabac, Serbia

• Boško Sinobad, dipl.ing. Teaching Associate Academy of Applied Studies Šabac, Šabac, Serbia

• Jelena Robinić, appl.ing. Academy of Applied Studies Šabac, Šabac, Serbia

• Nataša Martinović, dipl. ecc. Academy of Applied Studies Šabac, Šabac, Serbia

TABLE OF CONTENTS

Agriculture12
CHEMICAL COMPOSITION OF SMEDEREVKA AND VRANEC WINES
Ile Ilievski, Violeta Ivanova-Petropulos*
GROWING SEASON LENGTH AND THE METHOD OF HEAT UNITS IN SPRING
VEGETABLE PEA PRODUCTION
Srđan Zec, Janko Červenski, Slobodan Vlajić22
YIELD COMPONENTS AND GENETIC POTENTIAL OF WINTER BARLEY ON ALLUVIUM
SOIL OF SOUTH SERBIA
Vera Rajičić, Dragan Terzić, Jelena Stojiljković
AGRICULTURAL LAND LOSSES IN SERBIA OVER THE PERIOD 1990-2018
Branislav DRASKOVIC
IMPACT OF VARIOUS FERTILIZATION TREATMENTS ON GRAIN YIELD AND PROTEIN
CONTENT IN WINTER WHEAT
Vojin Cvijanović*, Marija Bajagić, Nenad Đurić
THE IMPORTANCE OF SMALL FARMS IN PRESERVING OF AUTOHIONIUS RACES
Perisic Vesna [*] , Ivana Stevanovic, Vladimir Perisic
RESEARCH OF CONVENIENCE FOODS ELABORATED OF BROILERS USING A NOVELTY
I EUNINOLOGI
CONNECTION OF CLOBAL C A D STANDARDS AND PRECISION ACRICIII THRE
Riliana Gruijć Vučkovski* Irina Marina Nikola Ćurčić
TOMATO CHLOROSIS VIRUS - T_0CV - A POSSIBLE PROBLEM IN TOMATO PRODUCTION
Nenad Pavlović*. Vera Rašković. Jelena Robinić
EFFECTIVE MICROORGANISMS IN SUSTAINABLE MAIZE PRODUCTION
Gorica Cvijanović*, Vesna Stepić, Nenad Đurić
MITIGATION OF ENTERIC METHANE
Aleksandra Ivetić*, Nikola Popović , Vukašin Belobrković
THE INFLUENCE OF THE HOUSING SYSTEM ON WELL-BEING DAIRY CATTLE
Perišić Vesna*, Petar Stošić, Vladimir Perišić
EXAMINATION OF POMOLOGICAL AND TECHNOLOGICAL CHARACTERISTICS OF SOME
SWEET CHERRY FRUIT VARIETIES
Stefan Marković*, Pakeza Drkenda, Osman Musić
ECONOMIC ASPECTS OF TOMATO PRODUCTION ON FAMILY FARMS IN THE REPUBLIC
Mladen Petrović* Bojan Dimitrijević Vojin Cvijanović 132
PURPLE-LEAF LETTUCE CULTIVAR SEEDLING PRODUCTION UNDER DIFFERENT
LIGHT TREATMENTS
Kristina Luković*, Jelena Stojiljković, Aleksandra Rakonjac
ISOLATION AND SENSITIVITY OF XANTHOMONAS CAMPESTRIS PV. CAMPESTRIS TO
COPPER COMPOUNDS IN VITRO CONDITIONS
Slobodan Vlajić*, Vukašin Popović, Maja Ignjatov152
ANALYSIS OF ORGANIC PRODUCTION IN SERBIA WITH A FOCUS ON ORGANIC
VEGETABLE FARMING
Stefan Marković*, Vera Rašković, Nenad Pavlović160
MONITORING OF INDICATIVE SOIL INDICATORS FOR ORGANIC FARMING IN THE
CONTEXT OF SUSTAINABLE DEVELOPMENT
Alina Hrechko, Olena Gololobova170

Food and gastronomy178
PREVENTION OF CROSS-CONTAMINATION IN THE FOOD INDUSTRY
Jelena Robinić*, Senita Isaković, Enver Karahmet
EFFECT OF HEAT STRESS ON FOOD CONSUMPTION, PRODUCTION AND CHEMICAL
COMPOSITION OF COW'S MILK
Aleksandar Miletić*, Mihailo Radivojević, Vera Rajičić
CHARACTERIZATION OF MYCOTOXIN HAZARDS WITH REFERENCE TO LEGAL
REGULATIONS OF AFLATOXIN M1 IN MILK
Ivana Jevtić*, Dragana Ilić Udovičić, Bojana Vučetić
Environmental protection and sustainable212
SECURING WATER SUPPLY IN MAASAI COMMUNITIES
Ljiljana Rodić*
HOUSEHOLD COMPOSTING USING ROTARY REACTOR FOR UTILIZATION OF ORGANIC
HOUSEHOLD WASTE
Vitaliy Syniashchyk*, Bohdan Derienko, Olena Kharlamova
MACROPHYTES AS BIOREMEDIATORS AND ECOSYSTEM ENGINEERS IN WATER
ENVIRONMENTS: AN OVERVIEW
Bojan Damnjanović*, Ana Vasić, Milan Glišić
THE IMPACT OF ENTERIC METHANE ON THE ENVIRONMENT
Aleksandra Ivetić*, Radmila Beskorovajni, Marijana Maslovarić
CLASSIFICATION OF WASTE THAT CAN BE LANDFILLED TAKING INTO ACCOUNT
LOCAL CHARACTERISTICS
Anna Titova*, Volodymyr Shmandiy, Lilia Bezdenezhnyh
POTENTIAL APPLICATION OF PHYTOREMEDIATION TO REDUCE POLLUTION WITH
POLYFLUORINATED AND PERFLUORINATED COMPOUNDS
THE IMPORTANCE OF THE DESTICIDE MARKET FOR THE DEVELOPMENT OF
THE IMPORTANCE OF THE PESTICIDE MARKET FOR THE DEVELOPMENT OF CUSTAINABLE ACDICITION IN CEDRIA
Milan Blagojević Jelena Igniatović Nemania Stošić
THE OWLS OF SERBIA: DISTRIBUTIONS GLOBAL THREATS AND CONSERVATION
STATUS AT EUROPEAN AND NATIONAL LEVELS
Milan Glišić. Bojan Damnjanović
Economics and Management 287
INTEGRATING SUSTAINABLE SUPPLY CHAIN PRACTICES FOR SOCIAL HOUSING
DEVELOPMENT: A QUALITATIVE STUDY OF JOHANNESBURG, TEMBISA
MZUCNUMILE MAKAIIMA [*] , ANATHI MINIAII SOKNETYE, IIAIKO KUANAK
Milež Stephenić Dužice Crijepović Milež Dejecić
MILOS SUAIKOVIC, DUSICA UVIJAIIOVIC, MILOS BAJAGIC
CONDETITIVENESS OF ACDICILITUDAL HOUSEHOLDS IN SEDDIA
Deian Cruijć Jelena Igniatović Aleksandra Đorđević
The relationship between the attitude towards religious marketing and the level of
consumer behavior change
Krisztina Bence-Kiss* 316
SMART CITIES AS PART OF THE SUSTAINABLE DEVELOPMENT AGENDA - POLICIES
STRATEGIES AND IMPLEMENTATION
Azemina Mashovic*, Jovana Kisin, Bela Muhi

INOVATION PROCESSES AS A RELEVANT STRATEGIC TOOL IN MODERN
Borislav Kolarić, Saša Spasojević
Tanja Kitanovska Stojkovska* Lisa Pantekovska
ASSESSING THE ENVIRONMENTAL AND ENERGY ASPECTS OF FERTILIZED
Marija Gavrilović, Almir Muhović, Vera Popović
Tourism - rural development
PREREQUISITES FOR THE DEVELOPMENT OF RURAL TOURISM IN SERBIA
Dušica Čvijanović, Miloš Bajagić, Drago Cvijanović
PECULIARITIES OF RURAL TOURISM DEVELOPMENT IN THE NORTHWESTERN BLACI
SEA REGION
Tamerlan Safranov*, Kateryna Husieva
PROSPECTS FOR THE DEVELOPMENT OF RURAL TOURISM IN THE STEPPE PART OF
KHARKIV REGION (UKRAINE)
Nadiya Maksymenko*, Nadiia Cherkashyna
THE OFFER OF LOCAL FOOD AS A FUNCTION OF TOURISM DEVELOPMENT IN THI
Aleksandra Vasić Popović*, Dragana Ilić Udovičić, Jelena Jevtić
THE ROLE OF MARKETING FOR THE CITY OF SABAC AS A TOURIST DESTINATION
Aleksandra Đorđević*, Ivana Vladimirović*
THE INFLUENCE OF ZLATIBOR'S BIOCLIME ON HEALTH AND MEDICAL TOURISM
Goran Stojićević, PhD
GASTRONOMY TOURISM AND SOCIAL MEDIA: INFLUENCE, TRENDS, ANI
DESTINATION MARKETING STRATEGIES
Miloš Zrnić
THE POSSIBILITY OF APPLICATION OF EFFECTIVE MICROORGANISMS IN THI
PRODUCTION OF HEALTHY SAFE FOOD FOR THE NEEDS OF THE DEVELOPMENT OF
SUSTAINABLE RURAL TOURISM
Marija Bajagić*, Gorica Cvijanović, Milan Blagojević
LEADER APPROACH TO TOURISM DEVELOPMENT IN RURAL AREAS: A CASE STUD'
Lucia Canatina* Vitalie Dilan
Education and knowledge inclusion
Education and knowledge - Inclusion
AGRICULTURE AS AN OPPORTUNITY FOR EMPLOYMENT OF PERSONS WITH DISABILITIES
Snežana Lozanović, Miroljub Nikolić*, Andrijana Nikolić
CHALLENGES OF TEACHING ENGLISH FOR SPECIFIC PURPOSES TO SPEAKERS OF
OTHER LANGUAGES
Lilia Petriciuc*,
Promotion and preservation of human health
HEALTH-RELATED PROBLEMS AND DAILY THERAPY IN THE POPULATION OF
PROFESSIONAL DRIVERS
Roland Antonić, Katarina Pavić, Marija Vešić

SAFETY FIRST: A COMPREHENSIVE APPROACH TO FOOD ALLERGY MANAGEMENT IN
RURAL TOURISM
Snežana Knežević*, Tamara Gajić, Dragan Vukolić
COMMUNICATION AND EMPATHY IN MEDICINE AND NURSING
Milena Cvetković Jovanović, Suzana Milutinović*, Ljubica Krivokapić,
NURSES' INTERVENTIONS FOR THE PREVENTION OF FALLS AMONG THE ELDERLY IN
SERBIA
Gordana Repić, *Sunčica Ivanović, Ivana Vukosavljević
STRATEGIC PROSTATE CANCER PREVENTION PROGRAMS
Milica Stanković, *Stefan Jovanović, Aleksandar Anđelković
EARLY PREDICTION OF QUALITY OF LIFE IN PATIENTS WITH PROXIMAL FEMUR
FRACTURES
Suzana Milutinović *, Milena Cvetković Jovanović, Ljubica Krivokapić
HEALTH CARE FOR PATIENTS DIAGNOSED WITH TUMORS OF THE UROTRACT
Stefan Jovanović*, Maja Stanković, Aleksandar Anđelković
IT, technology and inovations539
ANALYSIS OF THE ACTIVITIES ON SOCIAL NETWORKS OF THE BEST-KNOWN
WINERIES IN THE COUNTRIES OF THE OPEN BALKANS
Nemanja Jakovljević*, Darko Jakšić, Mladen Petrović
THE APPLICATION OF BIOPOLYMERS IN CAPSULE PRODUCTION
Kosana Popović, Slađana Živanović, Ivana Jevtić*

GROWING SEASON LENGTH AND THE METHOD OF HEAT UNITS IN SPRING VEGETABLE PEA PRODUCTION

Srđan Zec^{1*}, Janko Červenski¹, Slobodan Vlajić¹

^{1*}Institute of Field and Vegetable Crops, Maksima Gorkog 30, 21000 Novi Sad, Serbia e-mail: srdjan.zec@ifvcns.ns.ac.rs

ABSTRACT

Vegetable pea production hinges significantly on the duration of its growing season, primarily due to the fact that the period of optimal technological maturity of pea grains is short. Knowledge of the duration of the growing season for vegetable peas is of great importance from the aspect of production planning, especially on large-scale farms, in order to synchronize sowing and maturation timing with the capacities of mechanization for harvesting and processing. Interpretation of results based on weather conditions is of great importance as well, because environmental conditions closely determine pea yield and quality. In this paper, the length of the pea growing season was determined using the method of heat units for 12 different spring vegetable pea genotypes. The research included genotypes with varying growing season lengths, categorized as early, mid-early, mid-late, and late, spanning from 60 to 76 days. The examined pea genotypes accrued heat units ranging from 612.1 to 986.3, signifying varying degrees of heat accumulation. The methodology adopted for employing heat units in the planning of spring vegetable pea cultivation and maturation operates on the premise that heat accumulation during the growing season correlates linearly with growth and development intensity, as well as the duration of the growing season itself. Consequently, the summation of heat units emerges as a distinctive characteristic of each cultivar, facilitating informed decision-making in agricultural practices.

Keywords: vegetable pea, *Pisum sativum* L., mean temperature, number of days, pea sowing.

INTRODUCTION

The length of growing season from sprouting to technological maturity is a cultivar characteristic most affected by climate. During growing season, the pea crop is known to be highly sensitive to climatic conditions. More precisely, high temperatures during the grain formation period have a significant impact on pea (*Pisum sativum* L.) yield (Bénézit et al., 2017). Each crop has specific requirements for optimal environmental conditions to ensure proper growth and yield. Temperature stands out as a critical weather parameter that plays a crucial role in controlling plant growth and development. It has adverse effects on various physiological processes, including photosynthesis, respiration, membrane stability, fertilization, maturity, seed quality, and nutrient absorption. The method of heat units is quite useful in predicting growth and yield of various crops, including vegetable peas (Devi et al., 2019).

The system of heat units is used for the purpose of linking growth, development and maturity of plants with air temperatures. The direct and linear relationship between plant growth and temperature is generally assumed (Parthasarathi et. al., 2013).

Olivier and Annandale (1998) concluded that, due to the effect of temperatures, crops will not need the same amount of calendar time to reach a particular developmental stage. Bourgeois et al. (2000) stated that the system of heat units includes the sum of mean daily temperatures above a given base temperature. It is often stated that the base temperature of 0 to 5° C is most favourable for pea production, although each cultivar requires its own specific temperature. The system of heat units is used in the processing of peas so as to determine the date of sowing and relative maturity during the growing season based on data on mean daily temperatures. Heat unit systems often predict the time from sowing to crop maturity.

The aim of our study was to determine the length of the growing season and the sum of heat units in order to identify the optimal sowing time for the selected vegetable pea breeding lines. Additionally, we aimed to illustrate the method of determining the sum of heat units as a significant approach in planning optimal sowing dates for vegetable pea production.

MATERIAL AND METHODS OF WORK

Field trial

The field trial was set up during 2022, at the Rimski Šančevi site on chernozem-type land, in an irrigation system, at the Department of Vegetable and Alternative Crops of the Institute of Field and Vegetable Crops Novi Sad (45° 19'

55.7" northern latitude 19° 50' 14.9" east longitude and 86 m above sea level). The trial was set up as a randomized block design with five replications. The main plot consisted of two rows of peas with interrow spacing of 20 cm, intrarow spacing of 5 cm, and row length of 3 m. The distance between the two plots was 80 cm for easier manipulation and inter-row processing during the growing season.

Pea varieties can be classified according to their use into varietes grown for their grain and varieties where the young pod is used (Jovićević, 2011). Peas are grown primarily for their grain and less often for their pods (Đorđević et al., 2021). All genotypes used in this study belong to the group of peas cultivated for their grain. The research included 10 lines, named S-1 to S-10, and 2 domestic cultivars: Tamiš (S-T) and Dunav (S-D) of spring vegetable peas. The examined material is a part of the collection of *Pisum sativum* L. maintained at the Institute of Field and Vegetable Crops Novi Sad.

Harvesting of all tested genotypes was done manually at technological maturity. The primary sample for analysis consisted of 10 plants per repetition, i.e. 50 plants in total per one genotype.

The sum of heat units is calculated as the sum of mean daily temperatures minus minimum pea growing temperature of 4.5 °C from sowing to technological maturity (Đinović et al., 1984).

Agrometeorological conditions during the trial

Interpretation of results based on weather conditions is of great importance because environmental conditions largely determine the yield and quality of vegetable crops.

The values of the analyzed parameters were compared with the corresponding values of the multi-year average for the reference period from 1964 to 2014. The multiyear average data were taken from the electronic publication Meteorological yearbookclimate data of the Hydrometeorological Institute of the Republic of Serbia (http://www.hidmet.gov.rs). As an important parameter in vegetable pea production, the number of days in the growing season with maximum temperatures above 25 °C is shown. Maximum daily temperatures above 25°C have a depressive effect on the vegetative phase, flowering, pod setting, and pod development (Dinović, 1984; Fallon et al., 2006; Bénézit et al., 2017). The negative effect becomes stronger as temperatures rise and persist longer. Growth stops at 35°C. The plant is most sensitive to high temperatures immediately after flowering. Flowers drop, pods remain small and stunted, and only a small number of tiny seeds develop in them. Furthermore, high temperatures accelerate and shorten the period to technological maturity (Dinović, 1984). In the vegetative phase of development, high temperatures hinder optimal plant growth, resulting in significantly shorter plants that rapidly transition to the generative phase (Jovićević, 2011).

Precipitation sum during February was lower than the multi-annual average by 5.2 mm. Amounting to 1 mm, precipitation sum in March was negligible compared to the multi-annual average of 38.8 mm. The long period from sowing (February 24) to emergence (March 25) can thus be explained by the precipitation deficit in the period after sowing, as well as slightly lower temperatures during March as compared to the multi-annual average. During April, the precipitation sum was higher than in March, but still below average values, while the temperature was within the multi-annual average (Tab. 2). At the time of flowering and pod formation in May, precipitation were44.6 mm below the multi-annual average. The same trend continued during June, even though the highest sum of precipitation during the growing season was measured in mid-June. The average temperatures in May were slightly higher than the multi- annual average.

Maximum (°C)				Minimum (°C)				Mean (°C)		Multiannual average (°C)		
Month	Period											
Monui	Ι	II	III	Ι	II	III	Ι	II	III	Ι	II	III
February	18.0	18.4	18.1	-3.3	-3.8	-1.7	5.8	7.7	6.2	1.3	1.6	2.6
March	9.2	16.6	23.3	-4.5	-9.4	-6.3	2.5	4.3	10.3	4.3	6.2	8.8
April	22.3	24.8	23.2	-2.5	-1.4	1.6	10.4	9.3	13.1	10.8	10.8	13.5
May	26.0	31.4	32.3	8.5	6.0	11.7	17.2	19.6	19.7	15.8	17.2	17.9
June	33.0	33.7	36.2	12.8	12.4	15.3	23.2	22.0	24.9	19.2	20.0	20.9

Table 1. Mean maximum, minimum and average air temperatures (°C) at the investigated locality during the growing season.

Table 2. Precipitation sum (mm) per 10-day period at the investigated location during the growing season.

			iig seusoii.		
Month		Period		Sum	Multiannual
	Ι	II	III		sum
February	8	5	16	29	34.2
March	1	0	0	1	38.8
April	18	2	17	37	47.5
May	0	3	17	20	64.6
June	8	23	12	43	87.7

Table 3. Number of days with maximum temperatures above 25 °C.

10 day period							
Month	Ι	II	III				
February	0	0	0				
March	0	0	0				
April	0	0	0				
Мау	1	9	6				
June	10	10	8				

The optimal average daily temperature for the growth and development of peas is 16±7°C (9-23°C), (Đinović, 1994). In the vegetative phase 12-16°C, during flowering 16-20°C, and at pod development 16-22°C (Đinović, 1984; Cervenski et al., 2021). Most days with maximum temperatures above 25°C, which have a mitigating effect during flowering and immediately after flowering, were recorded in the second decade of May and throughout June (Tab. 1, 2, 3).

Early harvesting decreases pea yield but improves crop quality due to greater softness and sweetness of pea seed. Later harvesting increases pea yields at the expense of quality. Therefore, it is important to determine harvest dates that ensure both acceptable quality and yield. Pea yields are sensitive to environmental conditions, especially extreme temperatures and water deficit. Heat stress (> 27°C) in the period between flowering and harvest has the great negative impact on pea yield (Lambert and Linck 1958; Fallon et.al. 2006). Each degree/day above 25.6°C during flowering and pod filling reduces yield. Water stress during flowering has a greater negative impact on yield than if stress occurs during pod filling (Fallon et al., 2006).

RESULTS AND DISCUSSION

The length of growing season is a highly significant characteristic for peas, given that the period of optimal technological maturity for pea grains is short. In order to ensure harvesting peas at optimal technological maturity, when the grain is of the highest quality, it is necessary to plan the sowing carefully. When planning sowing, it should be adjusted so that the crops reach technological maturity in line with the harvesting machinery capacity and processing capacity (Đinović et al., 1984).

Given the percentage of sugar is in direct correlation with the quality of pea seed, more attention is paid to maturity (Jovićević et al., 2009). As the seed matures, the content of sugar and peptides decreases while the content of protein and starch increases, resulting in harder seed with higher tenderometric values, as such unsuitable for any form of processing. Physiologically mature grain has little water, higher energy value and is a significant protein food (Červenski et al., 2021; Zec, 2022).

According to Maynard and Hochmuth (2007), technologically mature pea grain contain 21% dry matter, 5.4% protein, and an average of 81 calories per 100 grams of grain. On the other hand, the dry matter content in botanically mature seeds ranges from 86 to 90%, with protein content between 21 and 28% (Jovićević, 2011).

The production of peas for processing can be planned with greater precision using the method of heat units. The methodology of heat units used in the planning of pea sowing and maturity is based on the assumption that the heat accumulated during the growing season is linearly proportional to the intensity of growth and development, and to the length of growing season. For pea crops, the sum of heat units is calculated as the sum of mean daily temperatures minus 4.5 °C for all days from sowing to technological maturity. The temperature of 4.5 °C is considered minimum growth temperature. Therefore, the days with an average daily temperature of 4.5 °C or lower enter the sum with 0 heat units because under such conditions the plant mostly does not grow. The sum of heat units is also affected by other factors, namely the type and fertility of soil, slope of the terrain, sowing depth, humidity, etc. For these reasons, the sum of heat units should be determined for each area and each cultivar. In our climate, the sum of heat units is from 600 to 1000 heat units, depending on the cultivar (Đinović et al., 1984;, Lešić et al. 2002).

The production of large-scale pea seed is achieved by successive sowing of one variety, or simultaneous sowing of cultivars with different duration of growing season (Ambrose, 2008). Research conducted by Takač et al. (2012) concluded that safer production is achieved by sowing more cultivars with different duration of growing season, as compared to sowing fewer cultivars with the same length of growing season. Vegetable pea breeding lines with different duration of growing season (early, mid-early, mid-late and late) were included in the research. The length of the growing season ranged from 60 days to 76 days, and the sum of heat units ranged from 612.1 to 986.3 (Tab. 5). According to Savić (2019) early maturity of genotypes is an important criterion in breeding, while genotypes with a shorter growing season can be used when selecting parental pairs for breeding for a shorter growing season. Sums of heat units, growing season lenght and harviest dates for each genotype are shown in the tables 4 and 5.

DNDTNTNDTNTNDT </th <th>М</th> <th>]</th> <th>Februar</th> <th>у</th> <th></th> <th>March</th> <th>l</th> <th></th> <th>April</th> <th></th> <th></th> <th>May</th> <th></th> <th></th> <th>June</th> <th></th>	М]	Februar	у		March	l		April			May			June	
1 x	D	SDT	KDTJ	ATJ	SDT	KDTJ	ATJ	SDT	KDTJ	ATJ	SDT	KDTJ	ATJ	SDT	KDTJ	ATJ
2 x	1	Х	х	Х	2.8	0	3.8	12.5	8	88.3	16.7	12.2	287.2	22	17.5	746.5
3 x x x z 2.7 0 3.8 3.2 0 88.3 15.9 11.4 309.4 24.9 20.4 786 4 x x x x x x x x x x x x x x 10 3.8 4.9 0.4 88.7 1.7.5 13 322.4 24.1 19.6 805.6 5 x x x 1.1 0 3.8 10.5 6 94.7 18.4 13.9 336.3 26.5 22 827.6 6 x x x 1.1 0 3.8 10.5 6 12.8 13.3 375.3 21.1 16.6 881.2 9 x x x 1.2 0 3.8 10.5 6 13.9 18.3 43.47 22.9 18.4 899.2 10 x x x 1.6 3.8 10.1 5.6 13.90 2.8 18.3 43.47 2.9 18.4 93.	2	х	х	х	1.6	0	3.8	3.4	0	88.3	15.3	10.8	298	23.6	19.1	765.6
4 x	3	Х	х	Х	2.7	0	3.8	3.2	0	88.3	15.9	11.4	309.4	24.9	20.4	786
5 x	4	Х	х	Х	2.1	0	3.8	4.9	0.4	88.7	17.5	13	322.4	24.1	19.6	805.6
6 x x x 1.1 0 3.8 14.2 9.7 104.4 18.1 13.6 349.9 22.7 18.2 845.8 7 x x x 1.7 0 3.8 10.8 6.3 110.7 16.6 12.1 12.8 17.8 13.3 375.3 21.1 16.6 881.2 9 x x x 2.6 0 3.8 10.5 6 12.8 18.5 14.4 389.3 22.5 18.8 899.2 10 x x x 1.6 0 3.8 6.9 2.4 13.4 20.0 15.5 41.6.4 22.5 18.9 934.9 12 x x x -0.4 0 3.8 10.1 5.6 139.0 22.8 18.3 43.47 22.9 18.4 971.6 13 x x x 5.0 0.5 4.3 12.6 8.1 154.5 2.07 16.2 470.5 12.9 14.4 10.02.7 16	5	Х	х	Х	0.1	0	3.8	10.5	6	94.7	18.4	13.9	336.3	26.5	22	827.6
7 x	6	Х	х	Х	1.1	0	3.8	14.2	9.7	104.4	18.1	13.6	349.9	22.7	18.2	845.8
8 x	7	х	х	х	1.7	0	3.8	10.8	6.3	110.7	16.6	12.1	362	23.3	18.8	864.6
9 x x x z	8	Х	х	х	1.2	0	3.8	16.6	12.1	122.8	17.8	13.3	375.3	21.1	16.6	881.2
10 x x x 1.6 0 3.8 6.7 2.2 131.0 16.1 11.6 400.9 22.2 17.7 916.9 11 x x x -2.3 0 3.8 6.9 2.4 133.4 20.0 15.5 416.4 22.5 18 934.9 12 x x x -0.4 0 3.8 10.1 5.6 139.0 22.8 18.3 434.7 22.9 18.4 953.3 13 x x x 5.0 0.5 4.3 12.6 8.1 154.5 20.7 16.2 470.5 19.2 14.7 986.3 15 x x x 8.9 4.4 8.7 14.9 10.4 164.9 21.2 16.7 487.2 20.9 16.4 100.7 16 x x x 8.7 4.2 0 13.7 8 3.5 175.1 20.5 16 521.2 21.8 17.3 1039.3 18 x x	9	х	х	х	2.6	0	3.8	10.5	6	128.8	18.5	14	389.3	22.5	18	899.2
11 x x x -2.3 0 3.8 6.9 2.4 133.4 20.0 15.5 416.4 22.5 18 934.9 12 x x x x -0.4 0 3.8 10.1 5.6 139.0 22.8 18.3 434.7 22.9 18.4 953.3 13 x x x x 5.0 0.5 4.3 12.6 8.1 154.5 20.7 16.2 470.5 19.2 14.7 986.3 15 x x x 8.9 4.4 8.7 14.9 10.4 164.9 21.2 16.7 470.5 19.2 14.7 986.3 16 x x x 8.7 4.2 12.9 11.2 6.7 171.6 22.5 18 50.5 16.7 11.2 532.4 21.7 17.2 1056.5 19 x x x 4.3 0 13.7 8.3 3.8 17.9 12.7 545.1 24.4 19.9 1076.4	10	х	х	х	1.6	0	3.8	6.7	2.2	131.0	16.1	11.6	400.9	22.2	17.7	916.9
12 x x x -0.4 0 3.8 10.1 5.6 139.0 22.8 18.3 434.7 22.9 18.4 953.3 13 x x x 2.1 0 3.8 11.9 7.4 146.4 24.1 19.6 454.3 22.8 18.3 971.6 14 x x x 8.9 4.4 8.7 14.9 10.4 164.9 21.2 16.7 487.2 20.9 16.4 1002.7 16 x x 8.7 4.2 12.9 11.2 6.7 171.6 22.5 18 505.2 23.8 19.3 1022 17 x x x 4.3 0 13.7 8 3.5 175.1 12.5 16 521.2 21.8 17.3 1039.3 18 x x x 4.3 0 13.7 8.3 3.8 179.4 17.2 12.7 54.51 24.4 19.9 1076.4 20 x x x 3.2	11	х	х	х	-2.3	0	3.8	6.9	2.4	133.4	20.0	15.5	416.4	22.5	18	934.9
13 x x x 2.1 0 3.8 11.9 7.4 146.4 24.1 19.6 454.3 22.8 18.3 971.6 14 x x x 5.0 0.5 4.3 12.6 8.1 154.5 20.7 16.2 470.5 19.2 14.7 986.3 15 x x x 8.9 4.4 8.7 14.9 10.4 164.9 21.2 16.7 487.2 20.9 16.4 1002.7 16 x x x 5.3 0.8 13.7 8 3.5 175.1 20.5 16 521.2 21.8 17.3 1039.3 18 x x x 4.2 0 13.7 7.5 0.5 175.6 15.7 11.2 53.2.4 21.7 17.2 1056.5 19 x x x 4.1 0 13.7 7.6 3.1 182.5 21.9 17.4 562.5 27.2 22.7 10991 21 x x 4.1 <td>12</td> <td>Х</td> <td>х</td> <td>х</td> <td>-0.4</td> <td>0</td> <td>3.8</td> <td>10.1</td> <td>5.6</td> <td>139.0</td> <td>22.8</td> <td>18.3</td> <td>434.7</td> <td>22.9</td> <td>18.4</td> <td>953.3</td>	12	Х	х	х	-0.4	0	3.8	10.1	5.6	139.0	22.8	18.3	434.7	22.9	18.4	953.3
14 x x x 5.0 0.5 4.3 12.6 8.1 154.5 20.7 16.2 470.5 19.2 14.7 986.3 15 x x x 8.9 4.4 8.7 14.9 10.4 164.9 21.2 16.7 487.2 20.9 16.4 1002.7 16 x x x 8.7 4.2 12.9 11.2 6.7 171.6 22.5 18 505.2 23.8 19.3 1022 17 x x x 5.3 0.8 13.7 8 3.5 175.1 20.5 16 521.2 21.8 17.3 1039.3 18 x x x 4.3 0 13.7 7.6 3.1 182.5 21.9 17.4 562.5 27.2 22.7 1099.1 21 x x x 3.3 17.0 14.8 10.3 20.9 19.7 15.2 597.5 23.8 19.3 1139.5 23 x x x 7.8 </td <td>13</td> <td>х</td> <td>х</td> <td>х</td> <td>2.1</td> <td>0</td> <td>3.8</td> <td>11.9</td> <td>7.4</td> <td>146.4</td> <td>24.1</td> <td>19.6</td> <td>454.3</td> <td>22.8</td> <td>18.3</td> <td>971.6</td>	13	х	х	х	2.1	0	3.8	11.9	7.4	146.4	24.1	19.6	454.3	22.8	18.3	971.6
15xxx8.94.48.714.910.4164.921.216.7487.220.916.41002.716xxxx8.74.212.911.26.7171.622.518505.223.819.3102217xxxx5.30.813.783.5175.120.516521.221.817.31039.318xxx4.2013.750.5175.615.711.2532.421.717.21056.519xxx4.3013.77.63.1182.521.917.4562.527.222.71099.120xxx3.3013.77.63.1182.521.917.4562.527.222.71099.121xxx4.1013.77.63.1182.521.917.4562.527.222.71099.121xxx7.83.317.014.810.320.919.715.2597.523.819.31139.523xxxx9.24.721.713.38.8209.719.114.6612.121.216.71156.2244.60.10.110.96.428.115.310.820.720.2650.323.3 <td>14</td> <td>Х</td> <td>х</td> <td>х</td> <td>5.0</td> <td>0.5</td> <td>4.3</td> <td>12.6</td> <td>8.1</td> <td>154.5</td> <td>20.7</td> <td>16.2</td> <td>470.5</td> <td>19.2</td> <td>14.7</td> <td>986.3</td>	14	Х	х	х	5.0	0.5	4.3	12.6	8.1	154.5	20.7	16.2	470.5	19.2	14.7	986.3
16xxx8.74.212.911.26.7171.622.518505.223.819.3102217xxx5.30.813.783.5175.120.516521.221.817.31039.318xxx4.2013.750.5175.615.711.2532.421.717.21056.519xxx4.3013.78.33.8179.417.212.7545.124.419.91076.420xxx3.2013.77.63.1182.521.917.4562.527.222.71099.121xxx4.1013.712.68.1190.624.319.8582.325.621.11120.222xxx7.83.317.014.810.3200.919.715.2597.523.819.31139.523xxx7.83.317.014.810.3200.919.715.2597.523.819.31139.523xxx9.24.721.713.38.8209.719.114.6612.121.216.7115.6244.60.10.110.96.428.115.310.820.524.720.2650.323.318.8<	15	х	х	х	8.9	4.4	8.7	14.9	10.4	164.9	21.2	16.7	487.2	20.9	16.4	1002.7
17 x x x 5.3 0.8 13.7 8 3.5 175.1 20.5 16 521.2 21.8 17.3 1039.3 18 x x x x 4.2 0 13.7 5 0.5 175.6 15.7 11.2 532.4 21.7 17.2 1056.5 19 x x x 4.3 0 13.7 8.3 3.8 17.4 17.2 12.7 545.1 24.4 19.9 1076.4 20 x x x 3.2 0 13.7 7.6 3.1 182.5 21.9 17.4 562.5 27.2 22.7 1099.1 21 x x x 4.1 0 13.7 12.6 8.1 190.6 24.3 19.8 582.3 25.6 21.1 1120.2 22 x x x 7.8 3.3 17.0 14.8 10.3 20.9 19.7 15.2 597.5 23.8 19.3 1139.5 23 x x	16	Х	х	х	8.7	4.2	12.9	11.2	6.7	171.6	22.5	18	505.2	23.8	19.3	1022
18 x x 4.2 0 13.7 5 0.5 175.6 15.7 11.2 532.4 21.7 17.2 1056.5 19 x x x 4.3 0 13.7 8.3 3.8 179.4 17.2 12.7 545.1 24.4 19.9 1076.4 20 x x x 3.2 0 13.7 7.6 3.1 182.5 21.9 17.4 562.5 27.2 22.7 1099.1 21 x x x 4.1 0 13.7 12.6 8.1 190.6 24.3 19.8 582.3 25.6 21.1 1120.2 22 x x x 7.8 3.3 17.0 14.8 10.3 200.9 19.7 15.2 597.5 23.8 19.3 1139.5 23 x x x 9.2 4.7 21.7 13.3 8.8 209.7 19.1 14.6 612.1 21.2 16.7 115.6 24 4.6 0.1 0.1	17	х	х	х	5.3	0.8	13.7	8	3.5	175.1	20.5	16	521.2	21.8	17.3	1039.3
19 x x 4.3 0 13.7 8.3 3.8 179.4 17.2 12.7 545.1 24.4 19.9 1076.4 20 x x x 3.2 0 13.7 7.6 3.1 182.5 21.9 17.4 562.5 27.2 22.7 1099.1 21 x x x 4.1 0 13.7 12.6 8.1 190.6 24.3 19.8 582.3 25.6 21.1 1120.2 22 x x x 7.8 3.3 17.0 14.8 10.3 200.9 19.7 15.2 597.5 23.8 19.3 1139.5 23 x x x 9.2 4.7 21.7 13.3 8.8 209.7 19.1 14.6 612.1 21.2 16.7 1156.2 24 4.6 0.1 0.1 10.9 6.4 28.1 15.3 10.8 220.5 22.5 18 630.1 24.6 20.1 1176.3 25 5.8 1.3 1.4	18	Х	х	х	4.2	0	13.7	5	0.5	175.6	15.7	11.2	532.4	21.7	17.2	1056.5
20 x x 3.2 0 13.7 7.6 3.1 182.5 21.9 17.4 562.5 27.2 22.7 1099.1 21 x x x 4.1 0 13.7 12.6 8.1 190.6 24.3 19.8 582.3 25.6 21.1 1120.2 22 x x x 7.8 3.3 17.0 14.8 10.3 200.9 19.7 15.2 597.5 23.8 19.3 1139.5 23 x x x 9.2 4.7 21.7 13.3 8.8 209.7 19.1 14.6 612.1 21.2 16.7 1156.2 24 4.6 0.1 0.1 10.9 6.4 28.1 15.3 10.8 220.5 22.5 18 630.1 24.6 20.1 1176.3 25 5.8 1.3 1.4 9.9 5.4 33.5 14.9 10.4 230.9 24.7 20.2 650.3 23.3 18.8 1195.1 26 5.7 1.2	19	Х	х	х	4.3	0	13.7	8.3	3.8	179.4	17.2	12.7	545.1	24.4	19.9	1076.4
21 x x x 4.1 0 13.7 12.6 8.1 190.6 24.3 19.8 582.3 25.6 21.1 1120.2 22 x x x 7.8 3.3 17.0 14.8 10.3 200.9 19.7 15.2 597.5 23.8 19.3 1139.5 23 x x x 9.2 4.7 21.7 13.3 8.8 209.7 19.1 14.6 612.1 21.2 16.7 1156.2 24 4.6 0.1 0.1 10.9 6.4 28.1 15.3 10.8 220.5 22.5 18 630.1 24.6 20.1 1176.3 25 5.8 1.3 1.4 9.9 5.4 33.5 14.9 10.4 230.9 24.7 20.2 650.3 23.3 18.8 1195.1 26 5.7 1.2 2.6 10.4 5.9 39.4 14.9 10.4 241.3 20.7 16.2 666.5 25.4 20.9 1216 27 5.7 </td <td>20</td> <td>Х</td> <td>х</td> <td>Х</td> <td>3.2</td> <td>0</td> <td>13.7</td> <td>7.6</td> <td>3.1</td> <td>182.5</td> <td>21.9</td> <td>17.4</td> <td>562.5</td> <td>27.2</td> <td>22.7</td> <td>1099.1</td>	20	Х	х	Х	3.2	0	13.7	7.6	3.1	182.5	21.9	17.4	562.5	27.2	22.7	1099.1
22 x x 7.8 3.3 17.0 14.8 10.3 200.9 19.7 15.2 597.5 23.8 19.3 1139.5 23 x x x 9.2 4.7 21.7 13.3 8.8 209.7 19.1 14.6 612.1 21.2 16.7 1156.2 24 4.6 0.1 0.1 10.9 6.4 28.1 15.3 10.8 220.5 22.5 18 630.1 24.6 20.1 1176.3 25 5.8 1.3 1.4 9.9 5.4 33.5 14.9 10.4 230.9 24.7 20.2 650.3 23.3 18.8 1195.1 26 5.7 1.2 2.6 10.4 5.9 39.4 14.9 10.4 241.3 20.7 16.2 666.5 25.4 20.9 1216 27 5.7 1.2 3.8 10.2 5.7 45.1 13.5 9 250.3 23.6 19.1 685.6 27.4 22.9 1238.9 28 1.6	21	Х	х	х	4.1	0	13.7	12.6	8.1	190.6	24.3	19.8	582.3	25.6	21.1	1120.2
23 x x y 4.7 21.7 13.3 8.8 209.7 19.1 14.6 612.1 21.2 16.7 1156.2 24 4.6 0.1 0.1 10.9 6.4 28.1 15.3 10.8 220.5 22.5 18 630.1 24.6 20.1 1176.3 25 5.8 1.3 1.4 9.9 5.4 33.5 14.9 10.4 230.9 24.7 20.2 650.3 23.3 18.8 1195.1 26 5.7 1.2 2.6 10.4 5.9 39.4 14.9 10.4 241.3 20.7 16.2 666.5 25.4 20.9 1216 27 5.7 1.2 3.8 10.2 5.7 45.1 13.5 9 250.3 23.6 19.1 685.6 27.4 22.9 1238.9 28 1.6 0 3.8 11.4 6.9 52.0 11.1 6.6 256.9 14.3 9.8 695.4 28.6 24.1 1263 29 x <td< td=""><td>22</td><td>Х</td><td>х</td><td>Х</td><td>7.8</td><td>3.3</td><td>17.0</td><td>14.8</td><td>10.3</td><td>200.9</td><td>19.7</td><td>15.2</td><td>597.5</td><td>23.8</td><td>19.3</td><td>1139.5</td></td<>	22	Х	х	Х	7.8	3.3	17.0	14.8	10.3	200.9	19.7	15.2	597.5	23.8	19.3	1139.5
24 4.6 0.1 10.9 6.4 28.1 15.3 10.8 220.5 22.5 18 630.1 24.6 20.1 1176.3 25 5.8 1.3 1.4 9.9 5.4 33.5 14.9 10.4 230.9 24.7 20.2 650.3 23.3 18.8 1195.1 26 5.7 1.2 2.6 10.4 5.9 39.4 14.9 10.4 241.3 20.7 16.2 666.5 25.4 20.9 1216 27 5.7 1.2 3.8 10.2 5.7 45.1 13.5 9 250.3 23.6 19.1 685.6 27.4 22.9 1238.9 28 1.6 0 3.8 11.4 6.9 52.0 11.1 6.6 256.9 14.3 9.8 695.4 28.6 24.1 1263 29 x x 13.3 8.8 60.8 13 8.5 265.4 15 10.5 705.9 27.5 23 1286 30 x x 14.1 </td <td>23</td> <td>х</td> <td>х</td> <td>х</td> <td>9.2</td> <td>4.7</td> <td>21.7</td> <td>13.3</td> <td>8.8</td> <td>209.7</td> <td>19.1</td> <td>14.6</td> <td>612.1</td> <td>21.2</td> <td>16.7</td> <td>1156.2</td>	23	х	х	х	9.2	4.7	21.7	13.3	8.8	209.7	19.1	14.6	612.1	21.2	16.7	1156.2
25 5.8 1.3 1.4 9.9 5.4 33.5 14.9 10.4 230.9 24.7 20.2 650.3 23.3 18.8 1195.1 26 5.7 1.2 2.6 10.4 5.9 39.4 14.9 10.4 241.3 20.7 16.2 666.5 25.4 20.9 1216 27 5.7 1.2 3.8 10.2 5.7 45.1 13.5 9 250.3 23.6 19.1 685.6 27.4 22.9 1238.9 28 1.6 0 3.8 11.4 6.9 52.0 11.1 6.6 256.9 14.3 9.8 695.4 28.6 24.1 1263 29 x x x 13.3 8.8 60.8 13 8.5 265.4 15 10.5 705.9 27.5 23 1286 30 x x 14.4 9.9 70.7 14.1 9.6 275 14.4 9.9 715.8 29.3 24.8 1310.8 31 x x	24	4.6	0.1	0.1	10.9	6.4	28.1	15.3	10.8	220.5	22.5	18	630.1	24.6	20.1	1176.3
26 5.7 1.2 2.6 10.4 5.9 39.4 14.9 10.4 241.3 20.7 16.2 666.5 25.4 20.9 1216 27 5.7 1.2 3.8 10.2 5.7 45.1 13.5 9 250.3 23.6 19.1 685.6 27.4 22.9 1238.9 28 1.6 0 3.8 11.4 6.9 52.0 11.1 6.6 256.9 14.3 9.8 695.4 28.6 24.1 1263 29 x x x 13.3 8.8 60.8 13 8.5 265.4 15 10.5 705.9 27.5 23 1286 30 x x x 14.4 9.9 70.7 14.1 9.6 275 14.4 9.9 715.8 29.3 24.8 1310.8 31 x x x 14.1 9.6 80.3 x x 17.7 13.2 729 x x x sum 3.8 76.5 194.7	25	5.8	1.3	1.4	9.9	5.4	33.5	14.9	10.4	230.9	24.7	20.2	650.3	23.3	18.8	1195.1
27 5.7 1.2 3.8 10.2 5.7 45.1 13.5 9 250.3 23.6 19.1 685.6 27.4 22.9 1238.9 28 1.6 0 3.8 11.4 6.9 52.0 11.1 6.6 256.9 14.3 9.8 695.4 28.6 24.1 1263 29 x x x 13.3 8.8 60.8 13 8.5 265.4 15 10.5 705.9 27.5 23 1286 30 x x x 14.4 9.9 70.7 14.1 9.6 275 14.4 9.9 715.8 29.3 24.8 1310.8 31 x x x 14.1 9.6 80.3 x x 17.7 13.2 729 x x x sum 3.8 76.5 194.7 454 581.8 581.8 Legend: M-month; D-day; SDT-mean daily temperature; KDTJ-daily heat unit; ATJ-accumulated heat unit 14.4 14.4 14.4 14.4 14.4 14.4 14.4	26	5.7	1.2	2.6	10.4	5.9	39.4	14.9	10.4	241.3	20.7	16.2	666.5	25.4	20.9	1216
28 1.6 0 3.8 11.4 6.9 52.0 11.1 6.6 256.9 14.3 9.8 695.4 28.6 24.1 1263 29 x x 13.3 8.8 60.8 13 8.5 265.4 15 10.5 705.9 27.5 23 1286 30 x x 14.4 9.9 70.7 14.1 9.6 275 14.4 9.9 715.8 29.3 24.8 1310.8 31 x x x 14.1 9.6 80.3 x x 17.7 13.2 729 x x x sum 3.8 76.5 194.7 454 581.8 581.8 Legend: M-month; D-day; SDT-mean daily temperature; KDTJ-daily heat unit; ATJ-accumulated heat unit 14.1	27	5.7	1.2	3.8	10.2	5.7	45.1	13.5	9	250.3	23.6	19.1	685.6	27.4	22.9	1238.9
29 x x 13.3 8.8 60.8 13 8.5 265.4 15 10.5 705.9 27.5 23 1286 30 x x 14.4 9.9 70.7 14.1 9.6 275 14.4 9.9 715.8 29.3 24.8 1310.8 31 x x x 14.1 9.6 80.3 x x 17.7 13.2 729 x x x sum 3.8 76.5 194.7 454 581.8 581.8 Legend: M-month; D-day; SDT-mean daily temperature; KDTJ-daily heat unit; ATJ-accumulated heat unit 10.4	28	1.6	0	3.8	11.4	6.9	52.0	11.1	6.6	256.9	14.3	9.8	695.4	28.6	24.1	1263
30 x x x 14.4 9.9 70.7 14.1 9.6 275 14.4 9.9 715.8 29.3 24.8 1310.8 31 x x x 14.1 9.6 80.3 x x 177 13.2 729 x x x sum 3.8 76.5 194.7 454 581.8 Legend: M-month; D-day; SDT-mean daily temperature; KDTJ-daily heat unit; ATJ-accumulated heat unit	29	Х	х	Х	13.3	8.8	60.8	13	8.5	265.4	15	10.5	705.9	27.5	23	1286
31 x x 14.1 9.6 80.3 x x 17.7 13.2 72.9 x x x sum 3.8 76.5 194.7 454 581.8 Legend: M-month; D-day; SDT-mean daily temperature; KDTJ-daily heat unit; ATJ-accumulated heat unit	30	Х	Х	х	14.4	9.9	70.7	14.1	9.6	275	14.4	9.9	715.8	29.3	24.8	1310.8
sum3.876.5194.7454581.8Legend: M-month; D-day; SDT-mean daily temperature; KDTJ-daily heat unit; ATJ-accumulated heat unit	31	Х	Х	Х	14.1	9.6	80.3	Х	Х	Х	17.7	13.2	729	Х	Х	Х
Legend: M-month; D-day; SDT-mean daily temperature; KDTJ-daily heat unit; ATJ-accumulated heat unit	sum		3.8			76.5			194.7			454			581.8	
	Lege	nd: M	-month;	D-day	7; SDT-1	mean d	aily ter	nperat	ure; KI)TJ-dail	y heat	unit; A	TJ-accu	mulat	ed heat	unit

Table 4. Heat units (from sowing time to harviest) at Rimski Šančevi in 2022

Table 5. Duration of growing season, harviest date and ATJ for examined vegetable pea

genotypes							
Genotype	Growing season	Harviest date	ATJ				
S-1	65	June 1 st	746.5				
S-2	61	May 24 th	630.1				
S-3	60	May 23 th	612.1				
S-4	66	June 2 nd	765.6				
S-5	65	June 1 st	746.5				
S-6	70	June 8 th	881.2				
S-7	70	June 8 th	881.2				
S-8	72	June 10 th	916.9				
S-9	76	June 13 th	971.6				
S-10	76	June 14 th	986.3				
S-T	63	May 27 th	685.6				
S-D	64	May 28 th	695.4				

Growing season length of peas represents the period from sprouting to technological maturity. The specified property is expressed in the number of days. Growing season length of the pea genotypes tested in our research was from 60 days to 76 days. Genotype S-3 had the shortest growing season (60 days). Followed by S-2 with 61 days, S-T with 63 days, S-D with 64 days, S-1 and S-5 with 65 days, S-4 with 66 days, S-6 and S-7 with 70 days, S-8 with 72 days and finally with the longest growing season were genotypes S-9 and S-10 with 76 days of growing season (Tab 5).

According to growing season length, all cultivars can be classified into four groups:

- 1. Early up to 60 days of growing season
- 2. Mid-early 61-65 days of growing season
- 3. Mid-late with 66-70 days of growing season
- 4. Late 70 days of growing season and longer (Đinović et al., 1984; Jovićević, 2011).

Genotype S-3 was the earliest in this research, where 60 days passed from germination to technological maturity, accumulated a sum of 612.1 heat units from sowing to technological maturity. The next genotype with 61 days was S-2, which accumulated 630.1 heat units from sowing to technological maturity. 685.6 heat units were required from sowing to technological maturity for the S-T genotype, with a growing season length of 63 days, and 695.4 heat units for the S-D genotype with 64 days of growing season. Genotypes S-1 and S-5 with 65 days of growing season accumulated 746.5, and genotype S-4 with 66 days of growing season accumulated 765.6 heat units. With 70 days of growing season, genotypes S-6 and S-7 accumulated 881.2 heat units. Genotypes S- 8 with 72 days of growing season accumulated 916.9 heat units. As the latest in the experiment with 76 days of growing season, genotypes S-9 and S-10 accumulated 971.6 and 986.3 heat units (Tab. 4 and 5). Olivier and Annandale (1998), showed that the sum of heat units from sowing to flowering varied from 770°C to 890°C depending on the cultivar, and from 1370°C to 1450°C from sowing to maturity (where harvest date was defined with a tenderometric value of 130). They also stated that the optimum temperature is somewhere between 25 °C and 30 °C. A detailed research on the impact of temperature on the growth and development of vegetable peas suggests that, considering the accumulated temperature during growing season, it is possible to strategically plan the sowing time and harvest dates in alignment with mechanization capacities.

Pea cultivars in the research of Bourgeois et.al. (2000) had the sum of thermal units from 711 to 996. In the results of Ivić (2016), growing season of the studied cultivars was from 80 to 88 days. During the growing season, the examined varieties accumulated from 799 to 935°C heat units.

CONCLUSIONS

The research included vegetable pea genotypes of different duration of growing season (early, mid-early, mid-late and late) which ranged from 60 days to 76 days. Line S-3 had the shortest growing season (60 days), followed by S-2 with 61 days, ST with 63 days, SD with 64 days, S-1 and S-5 with 65 days, S-4 with 66 days, S-6 and S-7 with 70 days, S-8 with 72 days and finally lines S-9 and S-10 with the longest growing season of 76 days. The methodology of heat units in planning pea sowing and maturity is based on the assumption that the heat accumulated during the growing season is linearly proportional to the intensity of growth and development as well as the length of vegetation.

The sum of heat units is characteristic of the cultivar, and the tested pea genotypes accumulated sums from 612.1 to 986.3 heat units.

Acknowledgements: This research was supported by the Ministry of Science, Technological Development and Innovation of the Republic of Serbia, grant number: 451-03-47/2023-01/200032.

REFERENCES

- Ambrose M. (2008). Garden Pea. J. Prohens & F. Nuez (Ur.), *Vegetables II* (str. 3-27). New York: Springer Science+Business Media, LLC.
- Bénézit M., Biarnès V., Jeuffroy M.H. (2017). Impact of climate and diseases on pea yields: what perspectives with climate change?. *Oilseeds & fats Crops and Lipids*, 24(1), D103. <u>https://doi.org/10.1051/ocl/2016055</u>
- Bourgeois G., Jenni S., Laurence H., Tremblay N. (2000). Improving the prediction of processing pea maturity based on the growing-degree day approach. *HortScience*, 35(4), 611-614. <u>https://doi.org/10.21273/HORTSCI.35.4.611</u>
- Červenski J., Medić-Pap S., Ignjatov M. (2021). Proizvodnja konzumnog graška. Zbornik referata, 55. Savetovanje agronoma i poljoprivrednika Srbije (SAPS). (str. 23-32). Zlatibor, Srbija.
- Devi S., Singh M., Aggarwal R.K. (2019). Thermal requirements and heat use efficiency of pea cultivars under varying environments. *Current World Environment*, 14(3), 376.
- Đinović I., Lešić R., Krsmanović Ž., Perić B., Ipša F., Gligorijević B., Kojić Z., Čermak N. (1984). *Grašak*. Beograd: Novinsko-izdavačka radna organizacija Zadruga.
- Đinović I. (1994). *Svet povrća*. Gornji Milanovac: Dečije novine.
- Đorđević R., Cvikić D., Đurić N., Gavrilović B., Đorđević Melnik O., Živanović T., Prodanović S. (2021). Selekcija industrijskih sorti graška u Institutu za povrtarstvo Smederevska Palanka. *Zbornik radova, Biotehnologija i savremeni pristup u gajenju i oplemenjivanju bilja.* (str. 123-129). Smederevska Palanka: Institut za povrtarstvo.
- Fallon E., Tremblay N., Desjardins Y. (2006). Relationships among growing degree-days, tenderness, other harvest attributes and market value of processing pea (*Pisum sativum* L.) cultivars grown in Quebec. *Canadian journal of plant science*, 86(2), 525-537. <u>https://doi.org/10.4141/P04-144</u>
- Ivić I. (2016). *Rezultati sortnog mikropokusa na grašku u poduzeću Podravka d.d.2014*. Završni rad. Visoko gospodarsko učilište u Križevcima, Hrvatska.
- Jovićević D., Jokanović R. M., Gvozdanović-Varga J., Tepić A. (2009). Characacteristics and suitability of some pea (*Pisum sativum* L.) cultivars for processing. *Acta Horticulturae*, 830(1), 83-90.
- Jovićević D. (2011). Proizvodnja graška. Milošević M. i Kobiljski, B. (Ur.), *Semenarstvo III* (str. 291-341). Novi Sad: Institut za ratarstvo i povrtarstvo.
- Lambert R. G. and Linck A. J. (1958). Effects of high temperature on yield of peas. *Plant Physiology*, 33, 347–350. <u>https://doi.org/10.1104/pp.33.5.347</u>
- Lazić B., Đurovka M., Marković V. (1993). Povrtarstvo. Novi Sad: Univerzitet u Novom Sadu, Poljoprivredni fakultet.
- Lešić R., Borošić J., Butorac I., Ćustić M., Poljak M., Romić D. (2002). *Povrćarstvo*. Čakovec: Zrinski.
- Maynard D.N., Hochmuth G.J. (2007). *Knott's Handbook for Vegetable Growers, 5th edition.* New Jersey: John Wiley & Sons, Inc.

- Olivier F. C. & Annandale J. G. (1998). Thermal time requirements for the development of green pea (*Pisum sativum* L.). *Field Crops Research*, 56(3), 301-307. https://doi.org/10.1016/S0378-4290(97)00097-X
- Parthasarathi T., Velu G., Jeyakumar P. (2013). Impact of crop heat units on growth and developmental physiology of future crop production: A review. *Journal of Crop Science and Technology*, 2(1), 2319-3395.
- Savić A. (2019). *Genotipska i fenotipska procena kolekcije pasulja (Phaseolus vulgaris* L.). Doktorska disertacija, Univerzitet u Novom Sadu, Poljoprivredni fakultet, Novi Sad, Srbija. <u>https://nardus.mpn.gov.rs/handle/123456789/12200</u>
- Takač A., Gvozdenović Đ., Gvozdanović-Varga J., Červenski J., Vasić M., Bugarski D., Jovićević D., Glogovac S., Popović V. (2012). Sortiment i kvalitet semena povrća za setvu u 2012 godine. *Zbornik referata, 46 Savetovanje Agronoma Srbije.* (str. 193-203). Zlatibor, Srbija.

CIP - Каталогизација у публикацији Библиотеке Матице српске, Нови Сад

338.43(082)

INTERNATIONAL Scientific Conference "Global Challenges through the Prism of Rural Development in the Sector of Agriculture and Tourism" (2 ; 2024 ; Šabac)

Book of proceedings [Elektronski izvor] / 2nd International Scientific Conference "Global Challenges through the Prism of Rural Development in the Sector of Agriculture and Tourism" (GIRR 2024), 10 May 2024, Šabac, Serbia ; [editors Jelena Ignjatović, Aleksandra Đorđević, Stefan Marković]. - Šabac : Academy of Applied Studies ; Novi Sad, 2024

Način pristupa (URL): <u>http://girr.vpssa.edu.rs/year-2024/</u>. - Opis zasnovan na stanju na dan 13.6.2024. - Bibliografija uz svaki rad.

ISBN 978-86-80417-96-7

а) Рурални развој -- Пољопривреда -- Зборници б) Рурални развој -- Туризам -- Зборници

COBISS.SR-ID 147059977

www.girr.vpssa.edu.rs

