V. International Agricultural, Biological & Life Science Conference, Edirne, Turkey, 18-20 September 2023

PROCEEDINGS OF 5TH INTERNATIONAL SYMPOSIUM ON BROOMRAPE IN SUNFLOWER

1-3 NOVEMBER, 2023

ANTALYA, TURKEY

PROCEEDINGS OF 5TH INTERNATIONAL SYMPOSIUM ON BROOMRAPE IN SUNFLOWER

1-3 NOVEMBER, 2023

ANTALYA, TURKEY

Organized by Trakya University International Sunflower Association International Researchers Association

> ISBN #: 978-625-00-1676-3

WELCOME NOTES

The parasitic angiosperm broomrape (*Orobanche cumana* Wallr) causes economic damage in sunflower production in a number of countries around the world, but especially in Central and Eastern Europe, Spain, Turkey, Israel, Iran, Kazakhstan, and China. For almost a century, there has been a constant tug-of-war between sunflower breeders and *Orobanche cumana*, with frequent changes in which side has the upper hand. Almost as soon as the breeders find a source of resistance to the latest race of the pathogen, broomrape responds by evolving into another virulent race. The development of resistant cultivars as well as optimized managing strategies is a high priority in controlling this parasite, over the world.

This is the 5th specific symposium on broomrape in sunflower, after those held in Turkey in 2008, Moldova in 2011, Spain in 2014 and Romania, in 2018.

The symposium is organized by Trakya University and International Researchers Association in cooperation with the International Sunflower Association (ISA). The symposium will be held in Megasaray Westbeach Hotel, Antalya, Turkey, on November 1-3, 2023. The symposium covers all aspects related to broomrape parasitisms in sunflower, including parasite biology, physiology, parasite-host interaction, the racial status of broomrape, genetic resistance, molecular breeding, chemical control using herbicide-tolerant, and integrated management.

The symposium gathered sunflower scientists from around the world, and present their recent achievements. The organizers also invited relevant stakeholders to provide a view on the broomrape situation around the world as well as prospects to overcome the limitation for sunflower production, imposed by this parasitic weed.

There are 18 oral presentations and 8 poster presentations. There will be 146 participants from 18 countries from the world.

We would like to thank all of you for joining this conference and we would like to give also special thanks to our sponsors and collaborators for giving us a big support to organize this event.

> Prof Dr Yalcin KAYA Head of the Organizing Committee

ORGANIZING COMMITTEE

NAME

Prof Dr Yalçın KAYA Assoc Prof Dr Necmi BEŞER Emrah AKPINAR Dr Leonardo VELASCO

Dr Maria PACUREANU-JOITA

M. İbrahim YILMAZ Dr Göksel EVCİ Dr Veli PEKCAN Cengiz KURT

INSTITUTION DUTY Trakya University Head of Committee Trakya University Vice Chair Trakya Univesity **Congress Secretary** Inst. Sustainable Agric. CSIC, Spain Member Romanian Acad, Res. Studies Center Member for Agroforest Biodiversity Trakya Agricultural Research Institute Member Trakya Birlik Member Trakya Seed Co, TURKEY Member International Researcher Assoc (IRSA) Member

SCIENTIFIC COMMITTEE

NAME	INSTITUTION	
Prof. Dr. Miguel CANTAMUTTO	IINTA Hilario Ascasubi Institute, ARGENTINA	
Prof. Dr Zhao JUN	Inner Mongolia Agricultural University, CHINA	
Prof. Dr. Maria DUCA	USAM, Republic of MOLDOVA	
Prof. Dr. A. Tanju GÖKSOY	Uludağ University, TURKEY	
Prof. Dr. Ahmet ULUDAG	Onsekizmart University, TURKEY	
Prof Dr Chao-Chien Jan	Inst Sunflower Tech., Sanrui Agritec Co., Ltd., CHINA	
Dr. Tatyana ANTONOVA	VNIIMIK, RUSSIA	
Dr. Begona PEREZ VICH	CSIC, Cordoba, SPAIN	
Dr. Thierry ANDRE	Soltis, FRANCE	
Dr. Siniša JOCIĆ	IFVC Novi Sad, SERBIA	
Dr. Stephane MUNOS	INRA, Toulouse, FRANCE	
Dr. Leire MOLINERO-RUIZ	CSIC, Cordoba, SPAIN	
Dr. Dragana MILADINOVIĆ	IFVC Novi Sad, SERBIA	
Dr. Thierry ANDRE	Soltis, FRANCE	
Dr. Branislav DOZET	KWS, GERMANY	
Dr Mehmet DEMİRCİ	IRSA, TURKEY	

INVITED SPEAKERS

Dr Leonardo VELASCO	Broomprae resistance from wild species
Dr. Dragana MILADINOVIĆ	Broomprae resistance utilizing genomic tools
Dr Mehmet DEMIRCI	CLEARFIELD control Broomrape and weeds.

EDITOR OF THE PROCEEDINGS ABSTRACT BOOK

Prof Dr Yalcin KAYA, Assoc Prof Dr Necmi BESER

CONTENTS

WELCOME NOTES
ORGANIZING COMMITTEE 4
KRASELA"- THE FIRST BULGARIAN SUNFLOWER HYBRID, RESISTANT TO BROOMRAPE (RASE H) AND STABLE YIELD POTENTIAL UNDER LIMITED MOISTURE CONDITIONS
EFFECT OF GENE DOSE ON BROOMRAPE RESISTANCE IN SUNFLOWER
GENETIC DİVERSİTY ANALYSİS OF BROOMRAPE (OROBANCHE CUMANA) POPULATİONS İN SUNFLOWER GROWİNG AREAS İN EUROPE
DNA MARKER FOR MARKER-ASSISTED SELECTION FOR SUNFLOWER RESISTANCE TO RACE G OF BROOMRAPE
WILD HELIANTHUS SPECIES AS A VALUABLE BREEDING SOURCE FOR BROOMRAPE RESISTANCE OF CULTIVATED SUNFLOWER (HELIANTHUS ANNUUS L.)
IN THE RACE WITH THE BROOMRAPE - IS THERE A WINNER?
STUDY THE RESPONSE OF DIFFERENT INTERSPECIFIC SUNFLOWER FORMS TO PEG-MEDIATED WATER STRESS
CLİMATE-RESPONSİVE APPROACHES FOR BUİLDİNG DURABLE RESİSTANCE OF SUNFLOWER TO BROOMRAPE İN EVOLVİNG ENVİRONMENTAL CONDİTIONS 16
RACES OF BROOMRAPE PRESENT İN SOUTH-EASTERN ROMANİA 18
NEW APPROACHES FOR ACHIEVING DURABLE RESISTANCE TO BROOMRAPE IN SUNFLOWER
A PRELIMINARY STUDY ON THE IDENTIFICATION OF DIFFERENT SUNFLOWER VARIETIES WITH THE LEVEL OF RESISTANCE TO RACE G MINOR SPECIES AN 21
APPLİCATİON OF SSR MARKERS TO REVEAL THE GENETİC DİVERSİTY OF SUNFLOWER BROOMRAPE İN CHİNA
DEVELOPMENT CRİSPR/CAS9-MEDİATED RESİSTANCE İN SUNFLOWER AGAİNST O.CUMANA
INFLUENCE OF BROOMRAPE ON SOME ANATOMICAL AND PHYSIOLOGICAL TRAITS IN SUNFLOWER
THE STIGO PROJECT: DECIPHERING THE MOLECULAR DIALOG OF O. CUMANA SEEDS GERMINATION
CONTENT AND OİL YİELD OF SUNFLOWER (HELİANTUS ANNUS) - HYBRİD DEVEDA DEPENDİNG ON THE MAİN TİLLAGE SYSTEM
TRANSCRIPTOME ANALYSIS AND GENE MINING OF BROOMRAPE IN SUNFLOWER- BROOMRAPE PATHOSYSTEM
MECHANİSM OF 'JİNMİAO TARGET' İN INHİBİTİNG OROBANCHE CUMANA PARASİTİSM OF SUNFLOWER
EVOLUTION OF <i>OROBANCHE CUMANA</i> WALLR. IN INTENSIVE SUNFLOWER CULTIVATION IN REGIONS OF RUSSIAN FEDERATION
ADVANCING BIOCONTROL STRATEGIES FOR BROOMRAPE MANAGEMENT
MONİTORİNG OF <i>OROBANCHE CUMANA</i> WALLR RACES İN SUNFLOWER FİELDS OF NORTH EAST GREECE

DETERMINATION OF AGRICULTURAL POLICY FACTORS AND THEIR	R EFFECTS
AFFECTING PRODUCERS' PREFERENCE FOR PRODUCTION OF OILY SU	NFLOWER:
THE CASE OF THRACE REGION	
DETERMINING THE YIELD PERFORMANCES AND THE RESIST	ANCE TO
BROOMRAPE AND DOWNY MILDEW OF IMI TYPE SUNFLOWER (HE	LIANTHUS
ANNUUS L.) HYBRIDS IN DIFFERENT LOCATIONS	
PARTICIPANT LIST	
AGBIOL 2023 CONFERENCE STUDENT ORGANIZING TEAM	
OUR SPONSORS	

DEVELOPMENT CRİSPR/CAS9-MEDİATED RESİSTANCE İN SUNFLOWER AGAİNST O.CUMANA

Kubilay Yıldırım¹,*, Ilkay Sevgen Küçük¹, Dragana Mıladınovıć² & Çigdem Gökcek Saraç³

¹ Department of Molecular Biology and Genetics Ondokuz Mayıs University ² Sunflower Institute of Field and Vegetable Crops ³ Department of Biomedical Engineering Akdeniz University *email: kubilay.yildirim@omu.edu.tr

ABSTRACT

Sesquiterpene lactones (STL) are a group of natural compounds found in various plant species, including sunflowers (Helianthus spp.), and they have been studied for their potential role in allelopathy and defense against pests and pathogens. Allelopathy refers to the ability of certain plants to release chemicals that affect the growth and development of neighboring plants and organisms. In the context of sunflower broomrape (Orobanche cumana) and sunflowers, STLs have been of particular interest due to their potential role in inhibiting the growth of the broomrape parasite. Some STLs have been shown to possess allelopathic properties, which means they can influence the germination and growth of other plants, potentially including parasitic plants like sunflower broomrape. Research has suggested that certain STLs found in sunflowers may exhibit inhibitory effects on the germination and growth of sunflower broomrape seeds. These compounds could potentially be released from the sunflower roots and into the soil, creating a hostile environment for the parasite. However, the effectiveness of sesquiterpene lactones in controlling sunflower broomrape is still an active area of research, and their practical application as a management strategy requires further investigation. In recent years, secretion of Sesquiterpene Lactones (STLs) from sunflower roots has been found to trigger the germination of broomrape seeds. The genes encoding the enzymes (HaGAS, HaGAO, HaG8H, HaCOS) functional in STL biosynthesis in sunflower have been well characterized. CRISPR-Cas9 is a powerful genetic editing tool that has been used to modify specific genes in various organisms, including plants, for a range of purposes, including crop improvement and pest resistance. In the light of all these information, genes of the enzymes that catalyze the production STLS was aimed to knockout with CRISPR/Cas9 technique in the study. It has been hypothesized that mutant sunflower lines developed in this way will have full resistance to broomrape. The sequences of four genes (HaGAS, HaGAO, HaG8H, HaCOS) encoding the enzymes functional in STL biosynthesis were retrieved from the database and processed with CRISPR-P 2.0 software to find out the best guide RNAs (gRNAs) that can target exon parts of the genes. By this way, four best gRNAs (one gRNA for each gene) were selected for simultaneous targeting of the first exon of the genes. All gRNAs were then transferred into a Cas9 containing agrobacterium plasmid (pHSE401) by using golden gate cloning. gRNA/Cas9 containing vectors were then inserted into agrobacterium rhizogenes and positive colonies were verified with colony PCR. The seed, cotyledon and hypocotyl explant of the sunflower genotype (NS3) was then treated with A. rihizoneges to insert of the gRNA/Cas9 into explants and root formation. Rooted mutants explants were then put into broomrape seed containing tissue culture media. The results indicated that 79% of the mutant roots have high resistance to broomrape. After DNA isolation, the target genes were amplified with PCR and sequenced to see the CRISPR-mediated mutation in the genes. among the broomrape resistant rooted explants 83% of them were recorded to carry mutation in the gene of interest. This is the first study developing broomrape resistant sunflower genotypes by using CRISPR genome editing system. Optimization of CRISPR mediated gene transfer and regeneration protocol will fasten and made important contribution to sunflower breeding. Genome editing-based strategies used to enhance crop resistance to parasitic weeds and its prospective applications will be discussed in the congress.

The project was supported financially by the Scientific and Technological Research Council of Türkiye (TÜBİTAK) with a project number; TOVAG-122O340

Key words: CRISPR, Sunflower, Sesquiterpene Lactones, broomrape, O.cumana, resistance