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In wheat, lodging is affected by anatomical and chemical characteristics of the

stem cell wall. Plant characteristics determining the stem strength were

measured in lodging tolerant mutant (PMW-2016-1) developed through

mutation breeding utilizing hexaploid wheat cultivar, DPW-621-50. Various

anatomical features, chemical composition, and mechanical strength of the

culms of newly developed lodging-tolerant mutant (PMW-2016-1) and parent

(DPW-621-50), were examined by light microscopy, the Klason method,

prostate tester coupled with a Universal Tensile Machine, and Fourier

Transform Infrared Spectroscopy. Significant changes in the anatomical

features, including the outer radius of the stem, stem wall thickness, and the

proportions of various tissues, and vascular bundles were noticed. Chemical

analysis revealed that the lignin level in the PMW-2016-1 mutant was higher

and exhibited superiority in stem strength compared to the DPW-621-50

parent line. The force (N) required to break the internodes of mutant PMW-

2016-1 was higher than that of DPW-621-50. The results suggested that the

outer stem radius, stem wall thickness, the proportion of sclerenchyma tissues,

the number of large vascular bundles, and lignin content are important factors

that affect the mechanical strength of wheat stems, which can be the key
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parameters for the selection of varieties having higher lodging tolerance.

Preliminary studies on the newly identified mutant PMW-2016-1 suggested

that this mutant may possess higher lodging tolerance because it has a higher

stem strength than DPW-621-50 and can be used as a donor parent for the

development of lodging-tolerant wheat varieties.
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Introduction

The term “lodging” refers to the persistent displacement of

shoots from their vertical or upright position due to certain

specific internal and environmental factors. It is more common

in cereal crops, particularly wheat and rice, and gives rise to

significant losses related to reduced quality, yield, and harvest

efficiency (Fischer and Stapper, 1987; Berry et al., 2003). Cereal

crops generally exhibit stem and root lodging (Berry et al., 2004).

Stem lodging is due to the bending and breaking of the lower

culm internodes consisting of thin diameter and less tensile

strength (Islam et al., 2007), whereas root lodging (anchorage

failure) results from poor root-soil integrity, causing the straight

stalks to bend or tumble from the tip (Baker et al., 1998).

Lodging in cereal crops tends to be higher when the crop is

near harvest (Shah et al., 2017). For example, in winter wheat,

the crop may lodge at any time between the emergence of the ear

and the grain maturity. In wheat, approximately 31% and 25%

reduction in yield was recorded after imposing the lodging at the

time of ear emergence and the milking stage respectively. In the

most serious case, lodging resulted in up to 80% yield loss (Berry

et al., 2007; Acreche and Slafer, 2011; Muhammad et al., 2020).

Lodging is a complex process that is affected by

environmental agents (wind, hail, rain, topography, and soil

type), morphological characteristics, chemical composition, and

the anatomical features of culms. Morphological characteristics

such as stem length, length and diameter of basal internodes, the

diameter of culms, number of tillers, and plant height, are closely

associated with the nature and extent of lodging (Kelbert et al.,

2004; Kong et al., 2013; Okuno et al., 2014; Berry and Berry,

2015; Yadav et al., 2017). Anatomical features such as the

thickness of the culm wall, the number of vascular bundles,

the diameter of vascular bundles and the culm cavity, and

thickness from the epidermis to the sclerenchyma layer are

associated with lodging resistance (Xu et al., 2000; Kong et al.,

2013). When it comes to chemical composition, lignin has long

been thought to be the principal cause of differences among

varieties in bending and lodging resistance. Many studies have

observed a connection between lignin content and stem-
02
breaking strength in different cultivars of wheat (Li et al.,

2021; Dong et al., 2022). It has also been reported that

increased hemicellulose and lignin concentration has a

synergistic effect on stem-breaking resistance (Kong et al.,

2013; Okuno et al., 2014; Zheng et al., 2017). The lodging

effects have been studied in various crops, using different

techniques and the most common is the one that includes the

pushing of the resistance from the lower parts of the plant

(Terashima et al., 1992; Berry et al., 2003).

Although the composition and characteristics of plant cell

walls have been postulated to influence the mechanical strength

of rice, no such effects on lodging resistance were studied in

wheat. Moreover, the role of these cell wall components in stem

strength and the processes governing their interaction is yet to be

thoroughly understood. Despite having identical quantities of

wall polymers, other factors i.e., hemicellulose monosaccharides,

the crystallinity of cellulose, and lignin monomer composition

may have a significant impact on lignocellulosic biomass (Park

et al., 2010; Wu et al., 2013). However, only a few studies have

shown the effects of the structural composition of wall materials

on stem strength.

This study was conducted to examine the morphological

features, cell wall composition, lignocelluloses, and anatomical

characteristics of the newly developed lodging tolerant mutant

wheat influencing resistance to stem breaking using light

microscopy, Klason method, prostate tester coupled with

Universal Tensile Machine (UTM), and Fourier Transform

Infrared Spectroscopy (FTIR). Ultimately, our main aim was

to develop a lodging-resistant variety for rel iable

agricultural production.
Material and methods

Plant materials

The lodging tolerant mutant (PMW-2016-1) was developed

from hexaploid wheat (Triticum aestivum L.) cultivar DPW-

621-50 exposed to EMS (Ethyl methane sulfonate). The seeds of
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DPW-621-50 were treated with 0.7% EMS (Ethyl methane

sulfonate). The mutant, PMW-2016-1, was identified through

the manual screening of the M4 population and maintained up

to the M6 generation. The manual identification was based on

the morphological features like more sturdiness and culm

diameter of the mutant (PMW-2016-1) with respect to the

parent (DPW-621-50) and then other physical attributes

related to lodging tolerance were measured here in this study.

The M6 population along with the parent (DPW-621-50) was

planted in 2018-2019 in 2.0-meter rows with a 30 cm row-to-

row and a 10 cm plant-to-plant distance. A standard package of

agronomic practices was followed. At maturity of both (PMW-

2016-1) and (DPW-621-50), second internodes from the basal

stems were collected before harvesting and fixed in a fixative

solution of formyl aceto-alcohol (FAA) (50% ethanol, 10%

formalin, 5% glacial acetic acid, and 35% double distilled

water). Samples were incubated in this fixative solution for 48

hr and then transferred to 70% ethanol for long-term storage.

The stem samples collected were also used to measure

other attributes.
Analysis of morphological and
anatomical features

From the middle of each internode, transverse sections of 20

µm were freshly cut and then viewed under a light microscope,

fitted with a digital camera (Zeiss AxioCamMRm 1.4 CCD). The

thickness of the stem wall and the width of the outer radius of

the stem were measured under the microscope. Under a light

microscope, the number of vascular bundles was counted. The

number of large vascular bundles in parenchyma tissues and

small vascular bundles distributed under the epidermis

was analysed.
Histochemical staining

AWeisner reaction was carried out to histochemically locate

the lignin according to the standard protocol (Mitra and Loque,

2014). The fixed samples were dehydrated in a graded ethanol

series and finally in a xylene series. Fresh hand-cut sections (~20

µm) of PMW-2016-1 and DPW-621-50 culms were incubated in

phloroglucinol solution (2 volume 3% in ethanol:1 volume

concentrated HCl) for 2 min. For toluidine blue staining,

0.02% aqueous solution of toluidine blue O was used to stain

the free-hand sections for 2 min (Li et al., 2003). The sections

were rinsed with distilled water 3-4 times until the solution was

clear. These sections were then mounted with DPX and observed

under a bright-field microscope. Sections were viewed under

magnification of 10X and 40X for vivid visualization of lignin

distribution across the stem and to differentiate the major
Frontiers in Plant Science 03
tissues. Digital images were scored/taken using an Axiocam

MRm camera.
Estimation of lignin content

The second internodes of PMW-2016-1 and DPW-621-50

plants were harvested at maturity. The Klason lignin content was

estimated by incubating the crushed internodes with 72%

sulfuric acid for 1 hour and extracted two times with 72%

sulfuric acid in water at 65°C for 30 min followed by rinsing

with water and overnight drying of the residue at 80°C. After

drying, the lignin content was measured following the method

described by Kirk and Obst (1988).
Mechanical strength of
lodging-tolerant mutants

A prostate tester was used to measure the mechanical

strength of stems of PMW-2016-1 and DPW-621-50. The

stem strength/lodging resistance was measured according to

the method described by Xiao et al. (2002). The force exerted

to break the culm internodes (bending stress) of PMW-2016-1

and DPW-621-50 was investigated by using a universal testing

machine (AMT-SC-01521). To reduce the error in sampling,

internodes of equal length and width were used for the

measurements. To avoid any inaccuracies, three replications

were taken for each measurement and the values were averaged.
Fourier Transform Infrared Spectroscopy
(FTIR) Analysis

The internodes of two genotypes of wheat stems were

ground into fine powder in liquid nitrogen and extraction was

done following the method of Li et al. (2003). The powder was

washed five times in cold phosphate buffer (50 mmol/L, pH 7.2)

and extracted twice with 70% ethanol for 1 h at 70 °C. After

vacuum drying, cell wall materials were assayed using FTIR. The

cell walls of wheat stems were placed on a barium fluoride

window supported on the stage of a Nicolet NicPlan IR

Microscope accessory of a Nicolet Magna-IR 750 FTIR

spectrometer equipped with a liquid nitrogen-cooled mercury

cadmium telluride detector. An area of the cell wall (100×100

mm) was selected for the spectral collection. Sixty-four

interferograms were collected in transmission mode with 4

cm−1 resolutions and co-added to improve the signal-to-noise

ratio for each stem internode. Three spectra were collected from

internodes of the different stems, and then averaged and

baseline-corrected. The triplicate-averaged spectrum was

then assayed.
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Statistical analysis

The presented values are the mean ± SD values. The

significant differences between the mutant and control plants

were indicated by an asterisk based on a student’s t-test using R-

4.2.1 software (*P < 0.05, **P < 0.01). All the statistical analyses

were performed using Microsoft Excel for Windows (Microsoft

Corp., Redmond, WA, USA). Correlation matrix were also

carried out and to test the significance of correlation

coefficients, critical table values were utilized.
Results

Comparison of morphological and
anatomical features

The morphological differences clearly showed the

superiority of PMW-2016-1 over the parent i.e., DPW-621-50

(Table 1). The lodging-tolerant mutant PMW-2016-1 was

marked by a large outer radius i.e., 2.40 mm of the 2nd

internode. The evaluated mutant against the parent DPW-621-

50 also showed varied differences in the thickness of the stem

wall (SWT) and the ratio of SWT to the outer radius. The thicker

stem walls along with a higher SWT/outer radius ratio in the

region of the 2nd internode was observed in the mutant. Large

vascular bundles were scattered in parenchyma tissues, and

small vascular bundles were distributed under the epidermis.

The count was comparatively higher in PMW-2016-1 for both

types of vascular bundles. Furthermore, the average number of

large and small vascular bundles per unit area was also reported

more in the mutant, PMW-2016-1 as compared to its parent

cultivar, DPW-621-50. There were only minor differences in the

culm diameter and internode wall thickness of internodes (Table 2).
Histochemical staining of the stem
cell walls

To visualize how lignin concentration varied among the stems of

lodging tolerantmutant (PMW-2016-1) and parent (DPW-621-50),

transverse sections of PMW-2016-1 and DPW-621-50 were
Frontiers in Plant Science 04
histochemically stained with Wiesner reagents and toluidine blue

O. After comparison, we found dark and light stained culm sections

frommutant (PMW-2016-1) and parent (DPW-621-50) plants with

phloroglucinol–HCl, respectively. Major color differences were

found between the mutant (PMW-2016-1) and parent (DPW-621-

50) in the mechanical or sclerenchyma tissues, especially the region

below the epidermis and vascular bundles. TheWiesner reactionwas

able to distinguish the differences in lignin compounds of different

stems of wheat. Red coloration was seen in the sclerenchyma tissues

and vascular bundles. The parenchyma tissues appeared pink, slowly

from inside to outside. A noticeable dark red staining appeared in

PMW-2016-1, but weak staining was found in DPW-621-50

(Figures 1, 2).
Lignin content in stem cell wall

The Klason lignin content in the cell wall of stems of putative

lodging-tolerant mutant (PMW-2016-1) and parent (DPW-621-

50) was found to be 28.42% and 23.63%, respectively. The lignin

content in the PMW-2016-1 stem was significantly higher than

that in DPW-621-50 (Figure 3A and Table 2).
Estimation of mechanical stem strength
using a prostate tester and UTM

Mechanical strength was estimated by analysing the stem

bending of mutant (PMW-2016-1) and parent (DPW-621-50)

using a prostate tester. The ranking of the strength was done based

on stem resistance to pushing which was performed by the prostate

tester on the bottom part of the stem. The average stem strength for

PMW-2016-1was recorded as 30.21 g/stem, found tobe significantly

higher than that of DPW-621-50 (27.25 g/stem) (Figure 3B). By

comparing the internode thickness and force (N) required to break

the internodes of themutant (PMW-2016-1) and the parent (DPW-

621-50), we observed that the newly identifiedmutant showedmore

mechanical strength and have thicker internode walls (Table 2).

Universal tensile machine results reported that the force required to

break the 2nd internode of themutant PMW-2016-1 i.e., 264.9Nwas

significantly higher than that of the parent DPW- 621-50 i.e., 154.87

N (Figure 3C).
TABLE 1 Morphological characteristics of parent (DPW-621-50) and lodging tolerant mutant (PMW-2016-1) wheat cultivars.

Trait DPW-621-50 PMW-2016-1

Number of tillers per plant 10.60 15.53

Plant height (cm) 101.04 106.20

Flag leaf length (cm) 24.14 21.48

Number of spikelets per spike 20.00 23.83

Number of grains per spike 53.77 56.92

Thousand grain weight (g) 38.99 45.10
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Fourier transform infrared
spectroscopy analysis

The FTIR spectra at 800 to 1800 cm-1 are the most

interesting region that identifies different chemical groups.

The different spectral peaks provide different functional

groups i.e., carbonyl C=O at 1747, amide I C=O at 1668,
Frontiers in Plant Science 05
aromatic rings of lignin (may be ferulic acid) at 1612,

aromatic skeletal vibrations at 1516, lignin at 1462 & 1425,

CH band at 1381, lignin at 1320, amide III in protein at 1246,

CHO at 1163, 1059 & 899 cm-1. The different functional groups

were assigned according to earlier studies (Sene et al., 1994;

McCann et al., 1994; Agarwal et al., 1995; Stewart et al., 1997;

Zhong et al., 2000).
TABLE 2 Comparison of anatomical features and compositions of 2nd Internode among DPW-621-50 (parent) and PMW-2016-1 (lodging tolerant
mutant).

Characteristics DPW-621-50 (Parent) PMW-2016-1 (Mutant)

Outer radius (mm) 2.17 ± 0.01 2.4 ± 0.02**

Stem wall thickness (mm) 0.84 ± 0.005 0.98 ± 0.01**

The ratio of the thickness of stem wall to outer radius 0.39 ± 0.005 0.41 ± 0.01

Proportion of sclerenchyma tissue (%) 10.67 ± 3.00 13.57 ± 3.12

Proportion of parenchyma area (%) 71.68 ± 10.20 80.46 ± 11.42

Number of big vascular bundles 23.02 ± 0.37 29.78 ± 0.85**

Number of small vascular bundles 20.49 ± 0.40 22.76 ± 0.26**

Total number of vascular bundles 42.83 ± 0.87 50.58 ± 0.44**

Average number of big vascular bundle per unit area 5.73 ± 0.78 7.04 ± 0.66

Average number of small vascular bundle per unit area 4.4 ± 0.15 5.1 ± 0.22*

Average number of vascular bundles per unit area 9.54 ± 0.46 11.16 ± 0.99

Culm Diameter (mm) 5.54 ± 0.04 6.13 ± 0.41

Internode wall thickness (mm) 0.86 ± 0.10 1.3 ± 0.36

Lignin content 23.63 ± 0.42 28.42 ± 0.25**

Lodging resistance 27.25 ± 0.5 30.21 ± 1.19*

Bending stress (N) 154.87 ± 42.47 264.9 ± 110.3
Data in the table are means ± S.D. levels of significance are: * p < 0.05, ** p < 0.01.
FIGURE 1

Phloroglucinal-HCl (Wiesner) staining of stem sections of PMW-2016-1 (A-C) and DPW-621-50 (A-F) showing lignin deposition in the walls of
sclerenchyma, Protoxylem and Metaxylem cells. The positions of the Protoxylem (Pv), Metaxylem (Mv), Sclerenchyma (Sc), Parenchyma (Pa),
Epidermis (Ep), Vascular bundles (Vb) are indicated.
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Here, in the present investigation, we compared and assayed

the components of cell walls of PMW-2016-1 and its parent

DPW-621-50 stem using FTIR. In the present investigation, the

variations in the intensity of some bands in the spectra reflect

compositional differences between the cell walls of mutant

PMW-2016-1 and its parent DPW-621-50. Figures 4A, B

represent the FTIR spectra collected from the fibers in

mechanical tissue of the newly identified lodging tolerant

mutant PMW-2016-1 and its parent DPW-621-50. In several

previous studies, it has been reported that the comparative

degree of lignin present in the cell walls can be crudely

assessed by the ratio of the peaks at 1505―1596 cm−1 for

the two absorbances, characteristics of lignin or lignin-like
Frontiers in Plant Science 06
structures (McCann et al., 1994; Zhong et al., 2000). Although

the FTIR spectra of the cell walls of PMW-2016-1 and its parent

DPW-621-50 stems were essentially similar, but slight

differences can be noted. For example, the relative absorbances

in the 1200―900 cm−1 region, and the principal absorbance

regions for polysaccharide absorbance are different among the

PMW-2016-1 and its parent DPW-621-50 stem cell walls.

Differences in the FTIR spectra of lignin absorbance clearly

showed that the peak of the lignin at the 1540- 1567 cm−1 region

was higher in PMW-2016-1 than those in the parent DPW-621-

50 stem cell walls. The ratio of 1504:1596 cm-1 was found more

in PMW-2016-1 as compared to control DPW-621-50. In DPW-

621-50, the ratio was reduced to 62% of PMW-2016-1 (Table 3).
FIGURE 2

Toluidine blue- O staining of PMW-2016-1 (A-D) and DPW-621-50 (A-C) stem sections showing lignin deposition in the walls of sclerenchyma,
Protoxylem and Metaxylem cells (A-C). The positions of the Protoxylem (Pv), Metaxylem (Mv), Sclerenchyma (Sc), Parenchyma (Pa), Epidermis
(Ep), Vascular bundles (Vb) are indicated.
A B C

FIGURE 3

Results of (A) Lignin content (B) stem strength (C) bending stress, of 2nd internodes of lodging tolerant mutant (PMW-2016-1) and parent (DPW-
621-50) wheat cultivars.
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Correlation of stem characteristics with
lodging resistance

The lodging resistance of PMW-2016-1 was 1.11-fold that

of DPW-621-50 (Table 2). The highest positive correlation

(0.9648) was found between lodging resistance and culm

diameter, and the lowest (0.0692) was found between lodging

resistance and parenchymatous tissue proportion. Lodging

resistance was positively correlated with OR (r =0.920, p <

0.01), SWT (r = 0.917, p < 0.01), NBV (r =0.953, p < 0.01), NSV
Frontiers in Plant Science 07
(r = 0.903, p < 0.05), TV (r = 0.888, p < 0.05), ASVA (r = 0.868,

p < 0.05), CD (r = 0.965, p < 0.01), IWT (r = 0.880, p < 0.05), BS

(r = 0.910, p < 0.05), and Lignin (r = 0.929, p < 0.01) (Table 4).

In addition, highly significant positive correlations (p < 0.01)

were found between OR and SWT (r = 0.998), OR and NBV

(r = 0.992), OR and NSV (r = 0.978), OR and TV (r = 0.996),

OR and ASVA (r = 0.926), OR and Lignin (r = 0.987), SWT and

NBV (r = 0.992), SWT and NSV (r = 0.986), SWT and TV

(r = 0.996), SWT and ASVA (r = 0.935), SWT and Lignin

(r = 0.989), NBV and NSV (r = 0.971), NBV and TV (r = 0.978),
TABLE 3 Comparison of lignin absorbance from the FTIR spectra of the two different genotypes of wheat stem cell walls illustrating the
maximum lignin content in PMW-2016-1.

Genotype Absorbance at 1504 cm-1 Absorbance at 1596 cm-1 1504/1596 Absorbance ratio

DPW-621-50 -0.00611 -0.0077 0.7935

PMW-2016-1 -0.0153 -0.01192 1.2835
A

B

FIGURE 4

Results of FTIR spectra of the components in cell wall of (A) lodging tolerant mutant PMW-2016-1 and (B) parent DPW 621-50 wheat cultivars.
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NBV and ASVA (r = 0.921), NBV and Lignin (0.996), NSV and

TV (r = 0.982), NSV and ASVA (r = 0.956), NSV and Lignin

(r = 0.962), TV and ASVA (r = 0.931), TV and Lignin

(r = 0.974), ABVA and IWT (r = 0.919), CD and IWT

(r = 0.963); and significant positive correlations (p < 0.05)

were found between OR and CD (r = 0.833), SWT and CD

(r = 0.825), NBV and CD (r = 0.862), ST and ABVA (r = 0.816),

ST and IWT (r = 0.847), NSV and ABVA (r = 0.829), NSV and

CD (r = 0.830), TV and ABVA (r = 0.828), ABVA and CD

(r = 0.815), ASVA and Lignin (r = 0.907), CD and Lignin

(r = 0.817), and, IWT and BS (r = 0.882). Whereas no

significant correlations were found between lodging

resistance and RSO, ST, PT, ABVA, and ATVA. Negative

correlations were also found between PT and CD, IWT, BS,

ST, and ATVA (Table 4).
Discussion

Lodging forces often distort the physical skeleton of the

wheat plant, which further results in the failure of the vascular

system to effectively mobilize the stem reserves to sink, which

affects grain size, grain weight, etc. thereby resulting in yield loss

(Shah et al., 2017). Khanna (1991) observed a strong relationship

between the number of vascular bundles and lodging resistance.

The author demonstrated that the larger number of vascular

bundles works as a bypass for the broken routes of the xylem and

phloem tissues, which results in better recovery and grain filling.

Therefore, a larger diameter and a solid stem could be used as

traits of choice for an increasing number of vascular bundles.
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Several studies have demonstrated that stem strength is

associated with its diameter and wall thickness (Kokubo et al.,

1989). Stem length, number of internodes, and density of stem

also affect the stem strength (Zhong et al., 1997; Kaack et al.,

2003; Kashiwagi and Ishimaru, 2004). It is also observed that the

stem wall thickness in wheat is strongly related to lodging

resistance (Kokubo et al., 1989). In contrast, it has also been

reported that stem strength decreases with an increase in stem

diameter (Norden and Frey, 1959; Dunn and Briggs, 1989).

Some researchers have suggested that the larger diameter and

wall thickness of basal internodes of the stem may be good

criteria for the development of lodging-resistant cultivars (Ross

et al., 1998; Xiao et al., 2002; Tripathi et al., 2003). In the present

study, we found that the stems of a newly developed mutant

(PMW-2016-1) possess solid stems, larger stem diameter, higher

stem wall thickness, and a significantly higher number of large

vascular bundles per unit area than its parent (DPW-621-50).

We also found that the different anatomical characteristics such

as stem diameter, wall thickness, and the number of vascular

bundles have a significant positive correlation with the stem

strength/lodging resistance.

The mechanical tissues i.e., sclerenchyma tissues and

vascular bundles, provide mechanical strength to the plant

(Fahn, 1982) and these tissues were the basis of brittle and

non-brittle stems in rice (Li et al., 2003). Ansari et al. (2013)

reported that in a brittle culm mutant (brc5), sclerenchyma cells

are hollow and thinner with little deposition of cell wall

materials. This study also suggested that epidermal cells

provide the plant’s stem strength. Mutant brc5 epidermal cells

are thinner due to the lack of cell wall depositions. In contrast to
TABLE 4 Correlation coefficients for lodging resistance and stem characteristics of PMW-2016-1 and DPW-621-50 used as a control.

OR SWT RSO ST PT NBV NSV TV ABVA ASVA ATVA CD IWT BS LIGNIN

SWT 0.9984**

RSO 0.7573 0.7696

ST 0.5640 0.5780 0.3925

PT 0.3739 0.4114 0.6888 0.1644

NBV 0.9921** 0.9924** 0.7155 0.5641 0.3255

NSV 0.9779** 0.9860** 0.7785 0.6874 0.4655 0.9714**

TV 0.9959** 0.9956** 0.7897 0.5796 0.4337 0.9784** 0.9824**

ABVA 0.8056 0.7955 0.6010 0.8161* 0.1937 0.7613 0.8288* 0.8275*

ASVA 0.9261** 0.9347** 0.5965 0.6985 0.4314 0.9212** 0.9559** 0.9309** 0.8088

ATVA 0.7144 0.7278 0.6969 -0.0385 0.6465 0.7160 0.6682 0.7114 0.2111 0.6008

CD 0.8332* 0.8247* 0.4224 0.7589 -0.0890 0.8623* 0.8300* 0.8030 0.8154* 0.8096 0.2823

IWT 0.7834 0.7720 0.4258 0.8467* -0.0747 0.7857 0.7979 0.7719 0.9195** 0.7858 0.1329 0.9630**

BS 0.6827 0.6739 0.2175 0.6712 -0.2900 0.7417 0.6735 0.6321 0.6352 0.6632 0.1631 0.9594** 0.8815*

LIGNIN 0.9873** 0.9892** 0.7328 0.5015 0.3721 0.9957** 0.9619** 0.9736** 0.7101 0.9074* 0.7765 0.8166* 0.7258 0.6948

LR 0.9203** 0.9166* 0.5375 0.6471 0.0692 0.9527** 0.9028* 0.8884* 0.7515 0.8676* 0.5194 0.9648** 0.8800* 0.9103* 0.9294**
fron
OR, outer radius; SWT, Stem wall thickness; RSO, The ratio of the thickness of stem wall to outer radius; ST, Proportion of sclerenchyma tissue (%); PT, Proportion of parenchyma area (%);
NBV, Number of big vascular bundles; NSV, Number of small vascular bundles; TV, Total number of vascular bundles; ABVA, Average number of big vascular bundle per unit area; ASVA,
Average number of small vascular bundle per unit area; ATVA, Average number of vascular bundles per unit area; CD, Culm Diameter; IWT, Internode wall thickness; BS, Bending stress;
LR, Lodging resistance.
* Significant at p < 0.05, ** Significant at p < 0.01.
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wild-type (WT) culm, mutant brc5 culm showed uneven shapes

of some parenchyma cells. On comparing the culms of PMW-

2016-1 and DPW-621-50, we found that the stems of PMW-

2016-1 have a larger number of vascular bundles per unit area

and a higher fraction of sclerenchyma tissues. Our study

provided a positive correlation between the proportion of

sclerenchyma tissue and the lodging resistance, but the

relationship was not so significant. The positive correlations of

mechanical tissues indicate their role in providing lodging

resistance in wheat.

Lignin is a key structural material of the secondary cell wall

that is akin to plant growth and provides mechanical support to

plants. The contents of lignin and cellulose were found to be

higher in the sclerenchyma tissues and vascular bundles (Kong

et al., 2013). A positive correlation was found in wheat between

lignin content and stem strength. Less lignin accumulation

results in the higher vulnerability of plants to lodging.

Cultivars that accumulate more lignin could be a viable

alternative to impart heritable mechanical strength (Berry

et al., 2003; Peng et al., 2014). Therefore, the assay for the

chemical composition of wheat stems offers a better phenotyping

tool for improving lodging resistance, and this strategy has been

used successfully in many studies. On comparing the culms of

PMW-2016-1 and DPW-621-50, we found that the stems of

PMW-2016-1 have a higher lignin content. Also, a significantly

higher positive correlation was found between lignin content

and lodging resistance (r = 0.9294). Therefore, the comparison

suggested that lodging resistance/stem strength in mutant

PMW-2016-1 also occurred due to increased lignin

accumulation in the stem cell walls.

Fourier transform infrared spectroscopy (FTIR) is a highly

reproducible and reliable means to investigate cell wall

compositional differences (Séné et al., 1994; McCann et al.,

1994; Agarwal et al., 1995; Stewart et al., 1997; Zhong et al.,

2000) and further highlight the subtle differences in components

of stem cell walls (Kashiwagi and Ishimaru, 2004) or mechanical

strength changes in stems (Wilson et al., 2000). In this study, the

observed absorbance peaks at different wavenumbers are

associated with concentrations of different molecules of cell wall

materials such as cellulose, lignin, pectin, and proteins. The higher

ratio of 1504:1596 cm-1 in PMW-2016-1 provided a quantitative

measure of more condensed and cross-linked lignin as compared

to control DPW-621-50 (Table 3). Differences in the FTIR spectra

of lignin absorbance clearly showed that the peak of the lignin at

the 1540- 1567 cm−1 region was higher in PMW-2016-1 than

those in the parent DPW-621-50 stem cell walls, suggesting a

relatively higher lignin content in the former. Nevertheless, this

finding agreed well with those gained by mechanical, anatomical

observations, and Histochemical staining.

We observed that the newly identified mutant showed more

mechanical strength and thicker internode walls (Table 2). The

correlation analysis also provided significant positive relations of

lodging resistance to the culm diameter, internode thickness,
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and the bending stress required to break the internodes. The

significant increase in the breaking force of the mutant (PMW-

2016-1) suggested that mutation in PMW-2016-1 strongly

affects the mechanical strength of culmsbut these results are

difficult to explain. The amount of lignin present in the organic

matter could be one of the possible reasons (Kriauciuniene et al.,

2012). From the literature survey, it was stated that the content

of certain materials such as lignin, hemicellulose, and cellulose

vary in different types of straw (Grabber, 2005; Kriauciuniene

et al., 2012; Sarauskis et al., 2013), which could also impact the

resistance to stem breakage. The environmental factors alter the

physical, biological and mechanical characteristics of the stem

present on and above the soil surface. Lodging might be reduced

by a thicker tiller that allows a significant flow of water and

nutrients in the plant. It was reported that the diameter and

specific density of stems are positively correlated to lodging and

stem strength (Zuber et al., 1999).

Along with the thickness of the stem cell wall, the thickness

of the pith parenchyma also determines the mechanical

resistance against stem bending (Ennos, 1993; Spatz et al.,

1998). The lignin content and its minuteness, carbon to

nitrogen ratio determine the intensity of cereal straw breakage

(Kriauciuniene et al., 2012). Solid-stem wheat cultivars tend to

have higher lodging tolerance than hollow-stem wheat cultivars

(Kong et al., 2013). It might be possible that the mutant PMW-

2016-1 might have some modification in the biosynthesis of the

secondary cell wall and have higher pith thickness, resulting in

thick stem walls. The preliminary study on mutant PMW-2016-

1 suggests that this plant can be used as a variety or as a donor

parent for the development of lodging tolerance wheat with

higher biomass.
Conclusion

We investigated the structural characteristics and cell wall

composition of the stems of a putative lodging-tolerant mutant

PMW-2016-1 and parent DPW-621-50. The stem mechanical

tissues present in the outer ring, and the pith parenchyma tissues

present in the inner ring of the stem increase the lodging

resistance. Considering our findings obtained from

histochemical staining, it is reasonable to propose that the

ratio of the outer radius of the stem and thickness of the stem

wall, a large proportion of sclerenchyma tissue, a large number

of vascular bundles, a large number of average vascular bundles

per unit area, and lignification are highly related to lodging

resistance. Our study suggests that the prior mechanical and

anatomical characteristics, as well as high lignin content in the

culm of the newly developed mutant PMW-2016-1, may

enhance the role of support and lodging resistance. Therefore,

it is suggested that the newly identified mutant PMW-2016-1

can be used as a variety or as a donor parent for the development

of lodging tolerance in wheat cultivars.
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Wilson, R. H., Smith, A. C., Kačuráková, M., Myton, K., Marque, C., and Boudet,
A. M. (2000). The mechanical properties and molecular dynamics of plant cell wall
polysaccharides studied by Fourier-transform infrared spectroscopy. Plant Physiol.
124, 397–405. doi: 10.1104/pp.124.1.397

Wu, Z., Zhang, M., Wang, L., Tu, Y., Zhang, J., Xie, G., et al. (2013). Biomass
digestibility is predominantly affected by three factors of wall polymer features
distinctive in wheat accessions and rice mutants. Biotechnol. Biofuels 6 (1), 1–14.
doi: 10.1186/1754-6834-6-183

Xiao, S. H., Zhang, X. Y., Yan, C. S., Zhang, W. X., Hai, L., and Guo, H. J. (2002).
Determination of resistance to lodging by stem strength in wheat. Agric. Sci. China
1, 280–284.

Xu, M. Z., Quan, X. L., Shi, T. Y., Zheng, C. S., and Liu, X. H. (2000). Study on
conducting bundle character of neck and correlation of several rice breeds. J. Agric.
Sci. Yanbian. Univ. 22 (2), 81–85.

Yadav, S., Singh, U. M., Naik, S. M., Venkateshwarlu, C., Ramayya, P. J., Raman,
K. A., et al. (2017). Molecular mapping of QTLs associated with lodging resistance
in dry direct-seeded rice (Oryza sativa l.). Front. Plant Sci. 8. doi: 10.3389/
fpls.2017.01431

Zheng, M., Chen, J., Shi, Y., Li, Y., Yin, Y., Yang, D., et al. (2017). Manipulation
of lignin metabolism by plant densities and its relationship with lodging resistance
in wheat. Sci. Rep. 7 (1), 1–12. doi: 10.1038/srep41805

Zhong, R. Q., Morrison, H., Himmelsbach, D. S., Poole, F. L., and Ye, Z. H.
(2000). Essential role of caffeoyl coenzyme a O-methyltransferase in lignin
biosynthesis in woody poplar plants. Plant Physiol. 124, 563–577. doi: 10.1104/
pp.124.2.563

Zhong, R., Taylor, J. J., and Ye, Z. H. (1997). Disruption of interfascicular fiber
differentiation in an arabidopsis mutant. Plant Cell 9 (12), 2159–2170. doi: 10.1105/
tpc.9.12.2159

Zuber, U., Winzeler, H., Messmer, M. M., Keller, M., Keller, B., Schmid, J. E.,
et al. (1999). Morphological traits associated with lodging resistance of spring
wheat (Triticum aestivum l.). J. Agron. Crop Sci. 182 (1), 17–24. doi: 10.1046/j.1439-
037x.1999.00251.x
frontiersin.org

https://doi.org/10.3389/fpls.2021.729647
https://doi.org/10.3389/fpls.2021.729647
https://doi.org/10.1105/tpc.011775
https://doi.org/10.1046/j.1365-313X.1994.5060773.x
https://doi.org/10.3791/51381
https://doi.org/10.1007/s10570-020-02972-7
https://doi.org/10.2134/agronj1959.00021962005100060009x
https://doi.org/10.1371/journal.pone.0086870
https://doi.org/10.1186/1754-6834-3-10
https://doi.org/10.1016/j.fcr.2013.11.015
https://doi.org/10.1006/anbo.1998.0745
https://doi.org/10.13080/z-a.2013.100.034
https://doi.org/10.1104/pp.106.4.1623
https://doi.org/10.1007/s11356-016-8237-1
https://doi.org/10.2307/2446321
https://doi.org/10.1007/s004250050072
https://doi.org/10.1626/jcs.61.380
https://doi.org/10.1016/S0378-4290(03)00095-9
https://doi.org/10.1104/pp.124.1.397
https://doi.org/10.1186/1754-6834-6-183
https://doi.org/10.3389/fpls.2017.01431
https://doi.org/10.3389/fpls.2017.01431
https://doi.org/10.1038/srep41805
https://doi.org/10.1104/pp.124.2.563
https://doi.org/10.1104/pp.124.2.563
https://doi.org/10.1105/tpc.9.12.2159
https://doi.org/10.1105/tpc.9.12.2159
https://doi.org/10.1046/j.1439-037x.1999.00251.x
https://doi.org/10.1046/j.1439-037x.1999.00251.x
https://doi.org/10.3389/fpls.2022.1067063
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

	Effect of stem structural characteristics and cell wall components related to stem lodging resistance in a newly identified mutant of hexaploid wheat (Triticum aestivum L.)
	Introduction
	Material and methods
	Plant materials
	Analysis of morphological and anatomical features
	Histochemical staining
	Estimation of lignin content
	Mechanical strength of lodging-tolerant mutants
	Fourier Transform Infrared Spectroscopy (FTIR) Analysis
	Statistical analysis

	Results
	Comparison of morphological and anatomical features
	Histochemical staining of the stem cell walls
	Lignin content in stem cell wall
	Estimation of mechanical stem strength using a prostate tester and UTM
	Fourier transform infrared spectroscopy analysis
	Correlation of stem characteristics with lodging resistance

	Discussion
	Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


