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Abstract: Cool season grain legumes occupy an important place among the agricultural crops and
essentially provide multiple benefits including food supply, nutrition security, soil fertility improve-
ment and revenue for farmers all over the world. However, owing to climate change, the average
temperature is steadily rising, which negatively affects crop performance and limits their yield.
Terminal heat stress that mainly occurred during grain development phases severely harms grain
quality and weight in legumes adapted to the cool season, such as lentils, faba beans, chickpeas, field
peas, etc. Although, traditional breeding approaches with advanced screening procedures have been
employed to identify heat tolerant legume cultivars. Unfortunately, traditional breeding pipelines
alone are no longer enough to meet global demands. Genomics-assisted interventions including
new-generation sequencing technologies and genotyping platforms have facilitated the development
of high-resolution molecular maps, QTL/gene discovery and marker-assisted introgression, thereby
improving the efficiency in legumes breeding to develop stress-resilient varieties. Based on the
current scenario, we attempted to review the intervention of genomics to decipher different compo-
nents of tolerance to heat stress and future possibilities of using newly developed genomics-based
interventions in cool season adapted grain legumes.

Keywords: climate change; high temperature; epigenetics; genome editing; nanoparticles; candidate
genes; mRNA; signalling pathways

1. Introduction

Cool season grain legumes are rich in proteins, vitamins, and minerals such as iron,
zinc, and folate. Hence, their intake in daily diet provides solution of overcoming the
problem of malnutrition and mineral deficiencies among the poor people of developing
countries who cannot afford costly animal protein-based diets. Moreover, use of grain
legumes provides a remedy for several chronic diseases like diabetes, obesity, and cardio-
vascular problems [1]. Therefore, health conscious people now prefer use of plant-based
protein in their diets even in developing countries over animal-based proteins [2]. This
is resulted in increasing the demand of grain legumes day by day. However, several bi-
otic (i.e., wilt, rust, blight diseases) and abiotic (i.e., heat, drought, salinity, acidity and
water logging) stresses significantly affect the yield potential of current cultivars of food
legumes [2,3]. Among abiotic stresses, heat stress is increasingly becoming a serious prob-
lem for the production of cool season grain legumes due to climate changes [4]. Heat
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shock and moderate heat stress are two types of heat stress. First is occurred due to lethal
temperatures for a short period of time, while later one is commenced when temperatures
arise above the optimum level for a long period of time [5]. Moderate heat stress generally
affects the growth and development of cool season legumes. In India, a large shift in area of
grain legumes from cooler, long season environments to warm, short season environments
has been made in the past years due to changes in the environmental conditions. For
example, the area under chickpea cultivation has been shifted from northern to southern
India. Many other countries also could experience unprecedented heat stress due to global
changes in climate. Cool season grain legumes including chickpea (Cicer arietinum L.), lentil
(Lens culinaris Medik.) and faba bean (Vicia faba L.) have yield losses if day temperatures
are increased from critical day temperatures of 35 ◦C. Heat stress during flowering reduced
yield in pea (Pisum sativum L.) [6]. In the common bean (Phaseolus spp.), high night temper-
ature (>20 ◦C) causes yield losses. In India, it is grown as a cool season crop during winter
season despite its being a warm season crop.

Heat stress in a complex trait and a network of genes, which controls the physiological
and agronomic traits, is involved in tolerance to heat stress. For example, in common
bean, enhanced leaf cooling identified as a pathway for heat stress tolerance [7]. Thus,
conventional breeding approaches could not be very successful in developing the heat-
tolerant cultivars in food legumes due to complex inheritance, except a few cases in
chickpea and faba bean [8–10] and other warm season crops like cowpea [11]. However,
heat-tolerant genotypes have been identified in a number of cool season grain legumes for
further utilization in conventional breeding for developing heat-tolerant cultivars [12–15].
Efforts have been made to improve the heat tolerance through conventional breeding
approaches, and screening methodologies have been developed to identify heat tolerant
cultivars [15,16]. In recent years, genomics has emerged as a way to decipher the genetics
underlying complex traits imparting heat stress tolerance in food legumes and published
several reviews focussed on different aspects of heat stress including seed setting [17],
functional mechanism [18], heat stress during reproductive and grain-filling phases [19],
functional genomics [20], physiological and molecular approach [21], and breeding, genetics
and genomics [2]. In the recent past years, new knowledge have been generated in the
area of genomics for tackling heat stress tolerance in cool season grain legumes, which
were not covered in previously published review articles. Therefore, in this review, we
discussed current and future genomics inventions for heat stress tolerance in the context of
cool season grain legumes.

2. Advances in Screening Techniques for Heat Tolerance

Heat-tolerant genotype has minimum yield losses, when temperature goes beyond
the threshold temperature. In cool season grain legumes, critical threshold temperature is
varied from 28 to 35 ◦C [19]. Temperature above 28 ◦C during reproductive period causes
sensitivity of pea crop [22]. While in lentil and chickpea, temperature greater than 35 ◦C
during flowering and podding resulted in poor grain yield [15]. Significant yield losses have
been observed in faba bean under daily temperatures > 25 ◦C [23,24], and stops flowering
and produces a few extra leaf-bearing nodes at 30 ◦C [25]. The critical temperature for
heat tolerance seems to be higher in chickpea than faba bean, lentil, and field pea, and
the reverse is true for cold tolerance [26]. Thus, this crop shows high sensitivity to heat
stress. Heat stress affects several phonological, biochemical and physiological traits such as
limited growth rate, membrane instability, photosynthesis, reproductive development, and
reduced net assimilation rate [17,24–30]. Heat stress sensitivity has been observed more in
cool season grain legumes compared to warm season food legumes [8].

Different approaches have been used to differentiate the heat tolerant and sensitive
genotypes by screening a number of genotypes at the temperature higher than the threshold
level in cool season grain legumes (Figure 1).
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Figure 1. An overview of screening methodologies used for identification of differentiating heat
tolerant and sensitive genotypes in cool season grain legumes (modified from [31]).

Delay sowing of genotypes under natural conditions in the field has been used as one
of the approaches for this purpose. It is planned in this way that reproductive period could
coincide with high temperature (i.e., greater than the threshold temperature). It is widely
used in several cool season grain legumes including chickpea and lentil [15]. However, in
another study, lentil genotypes were grown in earthen pots following delay sowing in order
to ensure heat stress (>30/20 ◦C; average max./min. temperatures) during seed filling [28].
Advancement in screening technologies resulted in development of several approaches for
screening heat stress tolerance in crop plants including cool season grain legumes. These
approaches used both natural and controlled conditions to grow plants under heat stress.
For this, plants initially were grown under field conditions in earthen pots or poly bags and
after that they were transferred in controlled conditions for exposing them to high tempera-
ture. Another way used for screening heat stress tolerance is to grow plants of different
genotypes in pots under controlled conditions for their whole life cycle and then higher
temperature is given at desired stage of plants. In chickpea, polybags have been used to
grow different genotypes and 14-days-old seedlings were subsequently exposed to elevated
temperature by creating polythene structure [32]. As we know, flowering time and duration
are important traits for managing stress through escape. Therefore, efforts have been made
to develop the image-based techniques for high-throughput phenotyping of flowering
intensity in cool season grain legumes [33]. This study used multiple imaging sensors,
image resolution, and image processing techniques in monitoring flowering intensity in
chickpea and pea and found strong correlation of image data with visual rating scores in
pea (r = 0.72). This study demonstrated possibility of using imaging for phenotyping of
flowering in crop plants [33]. Besides high-throughput phenotyping of individual plants,
advances in phenomics resulted in development of smartphone app platform for field
phenotyping at organ level using images and pictures [34]. It is very comfortable to take
2D pictures of targeted organ like leaf angel and leaf length through this. Multi-view stereo
(MVS) approach is another way of organ phenotyping at a low cost [35]. Further automa-
tion and robotics, new sensors, and imaging technologies (and software) are emerging
opportunities for developing high-throughput plant phenotyping platforms (HTPPs) for
screening high temperature tolerant genotypes in coming years [36]. Further, technological
advances in digital cameras, infrared thermal imagers, light detection and ranging (LIDAR),
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multispectral cameras, and hyperspectral sensors are becoming helpful in developing of
ground-based platforms and aerial-based platforms for phenotyping under field environ-
ments [37]. For example, in sorghum, the tractor-based proximal crop-sensing platform,
and UAV (unmanned aerial vehicle)-based platform helped to phenotype complex traits
like growth and radiation use efficiency (RUE) in sorghum [38].

3. Genomics Interventions

In cool season grain legumes, significant progress has been made to enrich genomic
resources (Table 1), which helped to develop the different types of molecular markers
including SSRs, diversity arrays technology (DArT) markers, single nucleotide polymor-
phism (SNP) markers, different SNP platforms, micro-array based markers, NGS-based
markers, genotyping by sequencing (GBS), InDel markers etc. [39–43] and other genomic-
based tools and techniques. Advances in genomics have led to intervention in its use for
enhancing the knowledge on heat-stress tolerance through the following ways (Figure 2).

Table 1. Genomic resources in cool season grain legumes.

Crop Reads/EST Unigenes/Transcript SSR SNPs References

Chickpea - 160,883 1022 [44]
- 2619 81,845 76,084 [45]
- 53,409 4816 [46]
- 34,760 4111 495 [47]
- 103,215 26,252 26,082 [48]
- - - 14,454 [49]
- 37,265 4072 36,446 [50]
- 43,389 5409 39,940 [51]

Lentil 1,380,000 25,592 - - [52]
1,030,000 27,921 - - [53]

119,855,798 20,009 - - [54]
111,105,153 97,528 - - [55]
58,621,121 77,346 - - [56]
46,700,000 - - - [57]
26,165,023 96,824 - - [2,58]

- - - -

Pea 1005.1 million - 16,877 [59]
- - - 10,739 [60]

- - 36,188 [61]
18,552 10,086 586 - [62]

- - - 520 [63]
- - - 340 [64]
- - - 956 [61]

3,042,418 - 35,455 [65]
- 8822 [66]

2,209,735 195,661 - [67]
-

40,903 10,506 - [68]
- 248,617 [69]

432 million 27,145 - - [70]
one billion reads 52,477 - - [71]

69,706,469 48,628 - - [72]
~55 million 81,774 - - [73]
88 million 7946 - - [74]

- 8899 3275 - [75]
- 10,800 2395 - [76]

720,324 70,682 2397 - [77]
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Table 1. Cont.

Crop Reads/EST Unigenes/Transcript SSR SNPs References

Grass pea 493,364 651,827 - [78]
570 million 27,431 3204 146,406 [79]
46,994,629 +
72,566,465 134,914 200 4892 [80]

399,648 14,386 - - [81]

Faba
bean - - 14,552 [82]

- 37,378 9071 - [83]

- 25,502 +
12,319 - [84]

1,247,881 343,325 - 560–2144 [85]
87,269 - - 39,060 [86]

- - 28,503 - [87]
304,680 60,440 802 - [77]

Common
bean - 629 - [88]

3123 - 184 - [89]
- - 7015 [90]

418 million - - 346,819 [91]
- - - 19,204 [92]
- - - 17,190 [93]
- - - 43,018 [94]
- - - 12,697 [95]
- - - 230 [96]

21,026 7969 - - [97]
- 3126 - - [98]
- - 1800 [99]

7079 4219 - - [100]
37,919 10,581 - - [101]
9583 - 4764 - [102]

- 59,295 - - [103]
900,000 30,491 - - [104]
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3.1. QTL/Gene Mapped for Traits Imparting Heat Stress

Heat stress is a complex trait and many genes control those complex traits that impart
heat-stress tolerance. Developments in genomics have made it feasible to dissect genetic
architecture of underlying such complex traits through QTL/gene mapping. Molecular
markers help to tag the genomic regions (i.e., quantitative trait loci; QTLs) controlling the
phenotype of a complex trait, which are distributed throughout the genome.

Each QTL is comprised of many genes, which are investigated as potential candidate
genes for a trait under study. Mapping populations derived from two parents (i.e., bi-
parental QTL mapping) and multi-parents/association panel (i.e., association mapping)
are usually used to map the QTLs/genes controlling a trait of interest [105,106]. How-
ever, markers linked a QTL controlling complex traits have not been used in marker
assisted breeding program due to poor markers density within QTL regions. However,
next-generation sequencing-based approaches especially genotyping by sequencing (GBS)
have provided a large number of evenly distributed SNP and gene SSR markers over
genome [107,108]. This led to development of high resolution linkage maps in cool season
grain legume crops [109–112], and are used to map several traits including traits imparting
in heat tolerance (Table 2).

Table 2. QTLs mapping for traits associated with heat stress tolerance in cool season grain legumes.

Crop Traits QTL Name/No. of
MTAs

Population
Size

PVE
(%) Reference

Chickpea filled pods/plot qfpod02_5 292 12.03 [113]
total number of seeds/plot qts02_5 292 10.00 [113]

grain yield per plot Qgy02_5 292 16.56 [113]
% pod setting q%podset06_5 292 13.30 [39,113]

chlorophyll content - 206 17.2 [114]

Lentil seedling survival qHt_ss 142 12.1 [115]
pod set qHt_ps 147 9.23 [115]

Field pea chlorophyll concentration 6 135 7–13 [116]
photochemical reflectance index 2 135 9 [116]

canopy temperature 2 135 6 [116]
reproductive stem length 6 135 4–6 [116]

internode length 6 135 5–7 [116]
pod number 9 135 7–10 [116]

In chickpea, a linkage map spanning 529.11 cM and comprising 271 genotyping
by sequencing (GBS) based single nucleotide polymorphism (SNP) markers identified
major QTL for number of filled pods per plot, total number of seeds per plot, grain
yield per plot and % pod setting under heat stress [113]. In some cases, candidate genes
controlling associated quantitative traits have been identified [117]. Moreover, genome-
wide association studies (GWAS) allow narrowing down the candidate regions to explore
specific haplotypes in natural populations and even wild species [118,119]. In chickpea, a
recent GWAS was conducted in a panel of 300 accessions to investigate the marker–trait
association for heat tolerance [120]. In pea, genome-wide association (GWA) analysis with
16,877 known high-quality SNPs identified association of genomic regions with chlorophyll
concentration (6 QTLs), with photochemical reflectance index and canopy temperature
(2 QTLs); reproductive stem length (7 QTLs), internode length (6 QTLs) and pod number
(9 QTLs) and also identified 48 candidate genes responsible for these traits under heat
stress [116]. QTLs for heat tolerance have also been mapped using GWAS in cereals
like wheat (Triticum aestivum L.) [121–126] and jowar or sorghum (Sorghum bicolor L.) [127].
Several QTLs for heat tolerance at flowering stage have been identified and used in breeding
program for developing heat tolerant cultivars of rice (Oryza sativa L.), [128–130]. In maize
(Zea mays L.), QTL hot spots for grain yield under heat stress have been identified [131].

Among food legumes, two dominant genes for heat stress tolerance [132] and QTLs for
pod set number per peduncle under HS have been identified in cowpea (Vigna unguiculata
L.) [133,134]. Further comparative genomic analysis identified HSPs and HSFs in these QTL
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regions in soybean (Glycine max L.) [3]. In azuki bean [V. angularis var. angularis (Willd.)
Ohwi and Ohashi]], QTL mapping was done for pollen viability trait under heat stress and
identified two QTLs (i.e., HQTL1 and HQTL2 [135,136]. In pea, genetic bases of several
traits including agronomic and seed quality traits [59,64], disease resistance [137,138], seed
mineral concentrations [139], seed lipid content [140], salinity tolerance [141], and frost
tolerance [142], have been uncovered through molecular mapping. Despite its importance,
only limited studies have been carried out to identify genomic regions associated with
stress tolerance in pea [143]. Therefore, more efforts are required to use the available
genomic resources for mapping/tagging the genes/QTLs controlling the traits imparting
in heat stress tolerance in cool season grain legumes.

3.2. Transcriptomics, Transcription Factors and Candidate Genes

Next generation sequencing (NGS) and RNA sequencing have led to unraveling and
understanding many heat-tolerant candidate genes in different crops species [144–147].
Transcriptome analyses have been conducted in many legumes including cool season grain
legumes for heat tolerance. For instance, in cowpea, the expression of various thermo-
tolerant genes has been analyzed using cDNA–AFLP [148]. Efforts have been made to
understand the genetic mechanism underlying heat shock factors (HSF) which play a vital
role for survival under heat stress in many crop species. HSF-ESTs (expressed sequence
tags), have been identified in Lotus japonicas (19), Medicago truncatula (21) and soybean
(25) [149]. Transcript expression of VfHsp17.9CII gene in faba bean showed its increased
accumulation and made 620-fold changes under high temperature [150]. Furthermore,
in soybean HSP genes (HSP 20, GmHsfA1) and their role in thermo-tolerance have been
evaluated [151–153]. Under different stress conditions, transcription factors (TF) are pivotal
in modulating cellular responses and there by activating the transcription of target gene.
These heat stress transcription factors (Hsfs) mediate activation of heat-responsive genes
and chemical stressors through the signal transduction chain [154,155]. WRKY TFs have
been identified as a major family of transcriptional regulators in other plant species, which
form an integral part of cell signaling pathways and influence the stress tolerance [156].
Heat-stress elements (HSE: 50-AGAAnnTTCT-30) or palindromic binding motifs of promot-
ers of heat stress (hs) genes are found conserved in eukaryotes [157]. Arabidopsis thaliana
(HsfA2) is a typical representative of plant Hsfs having a modular structure [158]. Se-
quence comparisons has indicated that the combination of a C-terminal activator motif
(AHA motif) with the consensus sequence FWxx(F/L)(F/I/L) to an adjacent nuclear export
signal (NES) represent a signature domain for many plant class A Hsfs; this domain has
enabled the identification of more than 90 unassigned new plant Hsfs and Hsf fragments
in EST databases [159,160]. APETALA2/ethylene response factor (AP2/ERF) superfamily
and heat-shock protein 90 (HSP90) family are another important stress responsive gene
family [161]. These families not only regulate responses against various biotic and abiotic
stresses in plants but also play an important role in various developmental processes.

In recent years, genome sequence availability of many cool season grain legumes
like chickpea [45], lentil [162], and pea [163] has greatly helped in understanding the
mechanism underlying stress tolerance. In chickpea, DNAJ, HSP 70 and HSP 91 genes
have been reported by using Illumina/Solexa sequencing [164]. In addition, complete
transcriptome analysis of heat-responsive genes in heat-sensitive genotypes (ICC 5912, ICC
4567, and ICC 10685) and heat-tolerant genotypes (ICC 15614, ICC 1356, and ICC 92944) has
been also reported in chickpea [165]. Major gene families for heat stress like AP2/ERF gene
family has also been reported in an earlier study [166]. One AP2 domain and three ERFs
clustered with AP2 sequences have also been identified in chickpea [166]. Deokar et al. [167],
also identified 16 AP2 and 120 putative ERF TFs in chickpea. This study strictly identified
and characterized the AP2s through the presence of two AP2 domains [167]. Furthermore,
transcription factors (TFs) for heat tolerance have been reported in chickpea [166,168].
Car-WRKY has been reported to be a multi-stress responsive transcription factor and
plays a crucial role in stress signal transduction pathways [169]. Genome-wide analysis
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of a WRKY TF gene model has revealed the presence of 78 WRKY TFs evenly distributed
across eight chromosomes in chickpea [4]. Furthermore, in chickpea seven genes including
ARP6 (actin-related protein), PIE1 (photoperiod independent early flowering 1), two SEF
(serrated leaf and early flowering), and three H2AZs (histone 2A variant-Z, a thermosensor
in plants) having homology with chromatin remodeling complexes (SWR1) in Arabidopsis
were identified and analyzed for their expression under heat stress [170]. Of the seven
genes, PIE1 was up-regulated during podding but down regulated at the seedling stage.
Higher tissue-specific expression of PIE1 and SEF genes was observed in root, flower, pod
wall, and grain tissues than in shoots. During pod development, all three H2AZ genes
might function as thermosensors, with greater downregulation within 15 min, 1 and 6 h of
the heat stress treatment [170].

“HSP90” is an important gene family for heat tolerance in legumes. In cool season
grain legumes, protein sequences have been examined for the presence of histidine kinase-
like ATPases (HATPase c) and HSP90 motifs. In chickpea, five HSP90 genes have been
identified [166] and the proteins encoded by these genes ranged from 648 to 818 amino acids
in length with isoelectric points ranging from 4.79 to 5.45 suggesting the conserved nature of
HSP90 proteins across the different legumes. Expression pattern of AP2/ERF and HSP90 in
chickpea under heat stress and RNA-seq data generated from leaf, root and flower tissues at
vegetative and reproductive stages revealed a unique set of AP2/ERF genes that expressed
in different tissues [166]. In the same study, genes Ca_01566, Ca_14133 and Ca_22585 were
down regulated, whereas Ca_14133, Ca_02170, Ca_02170 and Ca_23799 were up-regulated
in the vegetative tissues of heat-tolerant and heat-sensitive genotypes. However, in re-
productive tissues, Ca_02170, Ca_08436, Ca_00673 and Ca_08436 were up-regulated and
Ca_23799 and Ca_22585 were down regulated. Expression results prompt the identification
of probable tissue and stage-specific candidate genes, which can counteract the given stress
condition. Furthermore, proteomics analysis has identified 482 heat-responsive proteins
in the tolerant genotypes [171]. Besides, other proteins like pyrroline-5-carboxylate syn-
thase (P5CS) acetyl-CoA carboxylase, ribulose-1,5-bisphosphate carboxylase/oxygenase
(RuBisCO), ATP synthase, sucrose synthase, phenylalanine ammonia-lyase (PAL) 2, glyco-
syltransferase and late embryogenesis abundant (LEA) proteins have also showed strong
association with heat tolerance in chickpea. Several crucial proteins were induced by
heat exclusively in the heat-tolerant genotype. Accumulation of osmoprotectants, pro-
tected membrane transport, ribosome and secondary metabolite synthesis, activation of
antioxidant and defense compounds, amino acid biosynthesis, and hormonal modulation
identified using comparative proteome profiling and pathway analysis can be important
mitigating strategies for heat tolerance in chickpea.

Functional genomics facilitates the elucidation of the important role of candidate genes
for expression of tolerance against abiotic stress in crop plants [172–174]. Among cool sea-
son grain legumes, five HSP90 candidate genes (Ca_25811, Ca_23016, Ca_09743, Ca_17680
and Ca_25602) have been identified in chickpea through RNA-sequencing analysis of leaf,
flower and roots at different growth stages [166]. Mining of the candidate genes for heat
tolerance revealed 236 genes in 2.28 Mb (44.6–46.9 Mb) region in CaLG05 and 550 genes
in 6.50 Mb (7.85–14.35 Mb) in CaLG06 in chickpea. Functional categorization showed
association of many genes with biological processes (168 genes in CaLG05 and 365 genes in
CaLG06) in the two genomic regions [172]. Gene ontology classification revealed that these
putative candidate genes (11 in CaLG05 and 14 in CaLG06) known to function, directly
or indirectly, as heat-stress response genes in several plant species. Of the 25 candidate
genes, five genes encoded protein like farnesylated protein 6 (AtFP6), ethylene-responsive
transcription factor ERF114, ethylene-responsive transcription factor CRF4, F-box protein
SKP2B and ethylene-responsive transcription factor RAP2-11. These genes played key roles
in heat acclimation and growth of plants under severe heat-stress condition [172]. Addition-
ally, the role of several heat stress responsive proteins such as β-galactosidase, glucanase,
sucrose synthase, cystathionine gamma-synthase, 1-aminocyclopropane-1-carboxylic acid
oxidase, abscisate β-glucosyltransferase, late embryogenesis abundant proteins impart-
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ing heat stress tolerance in chickpea has been deciphered [171]. A total of five candidate
genes, namely Ca_00060 (encoding membralin protein) underlying GA11 marker, Ca_12498
(encoding ribosomal protein) underlying CESSR159 marker, Ca_25724 (encoding tran-
scription initiation factor TFIID) underlying NCPGR150, Ca_17429 (encoding GDP-fucose
protein O-fucosyl transferase) underlying NCPGR13 marker and Ca_08534 (encoding pen-
tatricopeptide repeat) underlying NCPGR202 were deciphered. Likewise, genes encoding
various transcription factors (TFs) [170,172,175], ribosomal proteins [176], pentatricopeptide
proteins [177,178], TIC, REF6, aspartic protease, cc-NBSLRR, RGA3 [175], and GDP-fucose
protein [179] showed their contribution in various abiotic stress including HS tolerance in
various crop.

In lentil, NGS-based transcriptome analysis provided opportunity to identify candidate
genes expressed under biotic and abiotic stress conditions, including heat stress [2,180,181].
The transcriptome analysis of heat sensitive and tolerant genotypes led to the identifi-
cation of candidate genes related to physiological and pollen phenotypes, cell wall, and
secondary metabolism in lentil [181]. This study identified the genes for PDCB (plasmodes-
mata callose-binding protein 3), phosphatidylinositol/phosphatidylcholine transfer pro-
tein SFH13, CDP-diacylglycerol–glycerol-3-phosphate 3-phosphatidyltransferase 1 chloro-
plastic, probable GPAT2 (glycerol-3-phosphate acyltransferase 2), O-acyltransferase, and
phosphatidylcholine diacylglycerol choline phosphotransferase. Those were up-regulated
in tolerant genotype under heat stress. A gene encoding pyruvate phosphate dikinase
identified under heat stress conditions has been found to be responsible for producing
the phosphoenolpyruvate (PEP). This metabolite is an essential compound of shikimate
pathway that is responsible for production of secondary metabolites involved in heat
tolerance. These genes were involved in different pathways in cell wall formation and
secondary metabolites production that were affected under heat stress [181]. In another
study, 76 upregulated and 47 downregulated candidate genes have been identified at the
late reproductive stage under heat-stress conditions and identified an important role of
tryptophan biosynthesis under heat stress in lentil [58].

3.2.1. microRNA

Plant miRNAs are a class of small (20–24 nucleotides) ncRNAs that regulate gene
expression negatively by either degradation of mRNA or by inhibiting translation [182].
Evidences have revealed that miRNAs play crucial role in plant responses to heat stress.
However, stress-associated regulatory networks that involve the role and activity of miR-
NAs are not clearly understood. It is further complicated to unravel such mechanism by the
fact that several genes are regulated by one miRNA and some genes are regulated by multi-
ple miRNAs. In different plant species, miRNA genes has been reported to enhance desired
agronomic traits due to their tissue-specific, stress- or senescence-induced and constitutive
overexpression [183–186]. Furthermore, endogenous and artificial target mimicry, artificial
miRNA genes, Meganucleases, TALENs, ZNFs, CRISPR/Cpf1 or CRISPR/Cas13a systems,
CRISPR/Cas9 and pri-miRNA or mature miRNA topical delivery have been shown to be
useful for modulating miRNA accumulation.

miRNA genes are up or down regulated in response to biotic [187] and abiotic (re-
viewed by Ferdous et al. [188], Hackenberg et al. [189]) stresses in numerous species
including soybean, sugarcane (Saccharum officinarum L.), rice, maize, wheat and tomato
(Solanum lycopersicum L.). Studies on the expression or accumulation of these miRNAs
have provided several lines of evidence to better understand the regulatory networks
associated with defense mechanisms against different types of stresses. From these find-
ings, several biotechnological tools have been applied for fine-tuning these networks and
improving tolerance to stresses in important crops. Specific and well-studied example of
miRNA involved to diverse abiotic stresses includes miR398, particularly for heat stress.
In Arabidopsis, miR398 has four target genes (CSD1, CSD2, Cox5b-1 and CCS1), which are
highly conserved in land plants [190,191]. Among these, CSDs, which are closely related to
copper/zinc superoxide dismutases, are important scavengers of reactive oxygen species
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(ROS) and CSD/CCS are involved in the negative regulation of accumulation of ROS [192].
They are also associated with heat shock protein (HSF) and heat shock factor (HSF) synthe-
sis [193]. miR398 was shown to be rapidly induced in response to heat stress, accompanied
by the down regulation of its target genes CSD1, CSD2, and CCS [194]. Transgenic plants
expressing miR398-resistant versions of CSD1, CSD2 or CCS showed hypersensitivity to
heat stress, while the csd1, csd2, and ccs mutants were more tolerant to heat stress, with
increased HSF and HSP levels [193,195]. In addition, miR398 and its target CSDs were also
found in the heat stress responses of Brassica rapa and Populus tomentosa [149,196], indicat-
ing that the mi R398-CSD/CCS pathway is widely involved in the heat stress response
in plants.

Many miRNAs have been utilized by direct cloning and sequencing in several legumes
including M. truncatula, chickpea, common bean, peanut, soybean and lotus, [197,198]. It
has been demonstrated that both conserved as well as novel miRNAs are present in these
species that may help in regulation of legume species-specific cell processes [197]. A total
of 1256 sequences that belong to 285 miRNA families have been reported from legumes
in a publicly available miRNA database, miRBase (http://www.sanger.ac.uk/cgi-bin/
Rfam/mirna/browse.pl, accessed on 19 March 2013). Several sets of novel species specific
(legume) miRNAs have been reported, including novel (87) and conserved (42) miRNAs
in soy bean [198–200]. In addition, excess of 100 novel miRNAs were identified in M.
truncatula [201–203]. Further, 16 conserved and six stress responsive miRNA families have
been identified in common bean [204]. Based on sequencing approach and computational
predictions, a large number of miRNA gene families (482), miRNA precursors (1039) and
mature miRNA (1114) sequences have been detected from soybean and related legume
species [205]. Further, NGS technology has also been successfully used to systematically
identify stress-associated miRNAs [206–212]. Recent studies in various plants species
suggested that miRNAs play an important role in abiotic stress tolerance like drought,
cold and salinity tolerance. These studies included conserved miRNAs such as miR164,
miR169, miR171, miR396, miR398, miR399, miR408 and miR2118 [213,214]. However, few
studies demonstrated role of miRNAs in heat stress response in cool season grain legumes.
In the case of chickpeas, the role of miRNA for stress response has been examined. It
has been demonstrated that overexpression of miR408 leads enhanced drought tolerance
in chickpea through the regulation of copper accumulation. The miR408 overexpression
results plantacyanin transcript repression to regulate DREB and other drought responsive
genes [186]. This tool can largely aid in future breeding programmes for various biotic and
abiotic stresses in legumes as in wheat 70 miRNA based SSR markers have been identified
and validated on a set of 20 terminal heat-tolerant and heat-susceptible genotypes for
developing heat tolerant cultivars through marker assisted selection [215].

3.2.2. Signaling and Metabolic Pathways

Different signaling and metabolic pathways expressed in response of heat stress at
different stages have been extensively studied and one of the schematic networks describing
the mechanisms by which heat stress regulates reproductive development of legumes
through sugar metabolism and signaling has presented in Figure 3.

http://www.sanger.ac.uk/cgi-bin/Rfam/mirna/browse.pl
http://www.sanger.ac.uk/cgi-bin/Rfam/mirna/browse.pl
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through sugar metabolic pathways and signalling pathway. The figures shows possible involvement
of chain of chemicals/metabolites/signalling molecules in legume reproductive tolerance under
heat stress.

In case of Arabidopsis, heat tolerance at seedling stage has been demonstrated. Mutants
deficient in various pathways like hormone signaling including salicylic acid (SA), jasmonic
acid (JA), abscisic acid (ABA), ROS systems and ROS regulatory systems and ethylene
signaling as well as heat shock protein (HSP)-dependent pathways in the heat response
have been analyzed [216]. Arabidopsis mutants deficient in S-nitrosoglutathione reductase
(GSNOR), which metabolizes the nitric oxide (NO) adduct S-nitrosoglutathione, were more
sensitive to heat stress compared with wild type [217], suggesting the involvement of
GSNOR-dependent NO metabolism in heat tolerance of plants. Several heat sensors local-
ized in different subcellular components have been identified. They include histone sensor
in the nucleus, a calcium channel on the plasma membrane, and two unfolded protein
sensors in the endoplasmic reticulum (ER) and the cytosol [218–221]. The deficiency in one
of the heat sensors, cyclic nucleotide-gated channel 2 (CNGC2) resulted in enhanced heat
tolerance in seedlings in addition to increased cytosolic Ca2+ level and enhanced accumula-
tion of HSPs [222]. Furthermore, unfolded proteins in the ER and the cytosol have been
identified to be linked with the heat sensing mechanism via ROS regulatory system [223].
(https://www.frontiersin.org/articles/10.3389/fpls.2018.00490/full, accessed on 4 Decem-
ber 2021)-B22Phytochrome B has been shown to be another heat sensor that mediates
the switching of cellular status between growth-promoting mode and heat-acclimation
mode [224,225]. Furthermore, involvement of key players of heat responses such as ROS
regulatory systems, Ca2+ signaling, kinases and various hormones in defense responses
has been demonstrated in previous studies [226–228]. However, cool season grain legume
like chickpea and warm season grain legume like mungbean, increased H2O2 content and
lipid peroxidation under heat stress were also observed [229]. Antioxidants, such as glu-
tathione (GSH), ascorbic acid (AsA) and proline, play important roles in protecting plants
from oxidative damage by scavenging ROS and thus enhance heat tolerance of legumes.
Furthermore, there is often overproduction of different types of compatible organic solutes
under abiotic stresses such as heat, drought, and salinity, among which proline and glycine
betaine are important ones that act as osmoprotectants and ROS scavengers in stress tol-

https://www.frontiersin.org/articles/10.3389/fpls.2018.00490/full
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erance of plants [230]. In chickpea, exogenous application of proline and glycine betaine
improved the growth of seedlings under heat stress [231,232]. Proline may enhance heat
tolerance of chickpea through alleviating the inhibition of heat stress on key enzymes in
carbon and oxidative metabolism in seedlings [233]. Proline translocation also appeared
to play an important role in controlling heat tolerance of reproductive development in
cowpea [234]. Proline transporter genes have been identified among five heat-tolerant
QTLs relevant to cowpea reproduction [134]. Therefore, it is speculated that proline and
its transportation might regulate the response of legume reproduction under heat stress,
which will be further testified by more direct evidence. However, little is known about the
role of different signaling pathways, metabolites or metabolic pathways for controlling
heat stress tolerance in lentil and other cool season grain legumes. Only few transcriptome
studies identified the candidate genes that encoded synthesis of secondary and primary
metabolites involved in heat tolerance in lentil [43]. However, metabolomics study can
directly exhibit the metabolite changes induced by stress as compared with transcriptomics.
Therefore, there is a need to apply metabolomics for exploring the metabolites involved in
heat-stress regulation in cool season grain legumes similar to other crop plants [235,236].
Further, a combination of transcriptomics with metabolomics can help to elucidate the
gene-to-metabolite pathways as investigated in rice in the response to heat stress [237].

4. Future Possibilities Genomic Intervention for Heat Stress Tolerance

Knowledge of genomics enhanced in the past years can be used to intervene the
development of heat stress tolerance in cool season grain legumes using the following ways.

4.1. Epigenetic Modifications

Environmental stresses including high temperature regulate the gene expression
through DNA methylation, histone modification, miRNA expression modulation, alternate
splicing etc. This is known as epigenetic modifications [238]. These changes help plants for
better adaption under stress conditions [239] and provide thermotolerance [240]. It has been
shown that priming of plants with mild or severe heat helps to maintain or acquire the heat
stress memory, which increases themo-tolerance in subsequent exposure of heat-stressed
primed plants [241,242]. The maintenance of thermotolerance is referred to as priming-
mediated heat-stress memory [243]. The roles of epigenetic factors have been shown
to control priming responses and to maintain the heat stress priming memory [244]. In
Arabidopsis, alternative splicing has been identified an important molecular mechanism that
underpin the heat shock priming-induced memory for enhanced heat stress tolerance [245].
This alternative splicing is regulated by epigenetic histone modifications [246]. Thus,
transcriptional pattern of genes in this study has been observed under the control of
epigenetics through alternate splicing and marked epigenetically hyper-inducted loci upon
recurring exposure to heat stress. However, identification molecular mechanism involved in
epigenetic control of heat stress tolerance is still challenging [247]. However, in lentil (a cool
season grain legume), heat priming of the seeds for 6 h at 35 ◦C and a foliar treatment of
γ-aminobutyric acid in combination helped to increase heat tolerance in sensitive genotypes
by improving photosynthetic efficiency, chlorophyll concentration, and sucrose synthesis;
and reducing the oxidative damage [248]. Epigenetic control of heat stress memory has also
been identified through miRNA, which helps plants to adapt against heat stress through
post-transcriptional regulators. Under heat stress, the expression of miRNAs and their
targets are affected by DNA methylation [249]. This has been observed in several crop
plants. For example, in poplar (Populus simonii), different heat-stress conditions methylated
the miR393a, miR156i, miR167h, miR396e, and miR396g at CNG and CG sites [249,250].
However, efforts are needed to study the role of these in cool season grain legumes.
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4.2. Mining Novel Allelic Variations for Heat Stress Tolerance

Genomics has made it possible to mine allelic variation for target traits. The roles of
these genomic advancements have been discussed in cool season legumes for developing
heat tolerance genotypes.

4.2.1. Genome Editing

Genome sequences of several cool season grain legumes such as chickpea [45,251],
pea [252], lathyrus [253], lentil [254], common bean [255] and adzuki bean [65,256], are
available publically. These genomic resources have provided opportunity to generate
allelic variation for genes controlling targeted traits using genome editing techniques.
Generated allelic variation has opened up new breeding possibilities for mining the alleles
for any given desirable trait [257]. The CRISPR/Cas9 genome editing approach has been
used widely for modifying a genome in a targeted manner in many crops including rice,
tomato, potato, cotton, soybean, maize, sorghum and wheat [257–259]. The genome editing
produces novel genetic variability through engineering and repairing of pathways, and
introduction of specific point mutations or insertions [260]. In the past years, efforts have
been made to exploit the genome editing for enhancing heat stress tolerance by targeting
genes for ethylene response and TFs in several crops [261–264]. In cool season grain
legumes, genome editing of targeted genes has not been used for heat stress tolerance.
However, in chickpeas, CRISPR/Cas9 editing was used for the 4-coumarate ligase (4CL) and
Reveille 7 (RVE7) genes, which were associated with drought tolerance leading to targeted
mutagenesis [265]. In addition to this, CRISPR/Cas9-based genome editing has also used
for a number of genes in other legume crops including model legume species [266].

4.2.2. Targeting-Induced Local Lesions in Genome (TILLING)

Genomic-based TILLING (targeting induced local lesions in genome) approach has
provided an opportunity to identify allelic variation for gene controlling a trait of inter-
est [267]. For TILLING, a mutant population generated through ethyl methane sulfonate-
(EMS), which produces point mutations distributed randomly in the genome, is required for
identifying individuals with mutations in the target gene [268]. This has been used mainly
for quality traits in several crops. One of the advantages is related with this approach that
transgenic plants are not needed to generate a mutagenesis population. This approach has
not been used to identify the allelic variation for a gene involved in g heat stress tolerance
in cool season grain legumes. However, in other crops, TILLING approach has been used
to screen mutagenesis population for mutations in the HSP genes. For example, new alleles
for small Hsp26 (sHsp26) genes were identified through TILLING that were found suitable
for enhancing heat tolerance in wheat [269]. A mutated HSP gene enhanced heat tolerance
in tomato has been identified using TILLING approach [270]. In common bean, TILLING
population has been generated that can be used to screen mutation in the genes responsible
heat stress tolerance [271].

4.3. Genomics of Underground Traits

Heat tolerance studies in cool season grain legumes have been focused mostly on
above ground traits. However, in other crops, studies demonstrated that high temperature
of soil highly affects the growth and development of plants than high air temperature
under heat stress and thus roots also show their sensitivity to heat stress [272–274]. Thus,
expression of pathways and proteins for thermo-tolerance in roots may be different than
above-ground traits imparting in heat stress tolerance. Therefore, focuses have been given
in other crops to studying the impact of heat stress on roots for enhancing knowledge
of underlying mechanism and pathways involved in heat stress tolerance. Proteomics
is a powerful approach to discover the proteins and pathways that are crucial for stress
responsiveness and tolerance. Therefore, proteomic proofing has been done in Agrostis
grass species that found up-regulation of sucrose synthase, glutathione–S–transferase and
superoxide dismutase. This study also showed that heat shock protein Sti (stress-inducible
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protein) may contribute to the superior root thermotolerance and high phosphorylation of
fructose-biphosphate aldolase under heat stress [272]. Proteomic knowledge in association
with genomics helps to know the genes and pathways control the thermos-tolerance in
roots under heat stress. Thus, a genome-wide transcriptional and proteomic profiling
of root traits under heat stress in soybean showed differential expression of 1849 and
3091 genes in root hairs and stripped roots, respectively, in response to heat stress. This
study identified 10 key regulatory modules controlling the majority of the transcriptional
response to heat stress. Proteomic analysis in this study identified a variety of proteins
changed their expression under heat stress and most of them showed their role in thermo-
tolerance, chromatin remodelling and post-transcriptional regulation [274]. Further efforts
are required for genomics and proteomic studies in cool season grain legumes.

4.4. Nanoparticles Based Genomics and Proteomics

Nanotechnology is an emerging field for providing the new information on biological
systems because interaction of nanoparticles with plants led to several morphological and
physiological changes. Nanoparticles of minute sizes can penetrate in the cell organelles
and nuclei leading to disruption of basic biological function and change in the structure
and function of DNA [275,276]. Nanoparticles have both negative and positive effects on
plants [277]. In a recent study, nanoparticles have been shown to have positive impact on
plant by immunizing them against heat stress [278]. As nanoparticles made several changes
in the profiling of proteins and transcriptomes, high-throughput transcriptomics, pro-
teomics, and metabolomics approaches can help to understand these changes at molecular
level in crop plants [279]. Thus, nanoproteomics and nanogenomics involving application
of proteomics and genomics techniques aided by nanotechnology [280] may become more
useful to understand biochemical and molecular responses crop plants for nanoparticles
under heat stress.

5. Concluding Remarks

During the last two decades, significant progress has been made on heat-stress tol-
erance and its component traits including number of filled pods per plot, total number
of seeds per plot, % pod setting, chlorophyll concentration, photochemical reflectance
index and canopy temperature, reproductive stem length, internode length and pod num-
ber in cool season grain legumes. Efforts have been made to develop the image-based
techniques for high-throughput phenotyping of flowering intensity in cool season grain
legumes [32]. In cool season grain legumes, significant progress has been made in devel-
opment of genomic resources. However, the available information on genomics has not
been fully utilized in breeding programmes. Limited efforts have been made to identify
QTL/genes for heat stress tolerance. Moreover, all the identified genes have not been
functionally validated. Therefore, sincere efforts are required to identify the functional
and associated markers with heat stress tolerance in cool season grain legumes. These
QTLs can be introgressed through marker aided conventional breeding in elite but heat
sensitive grain legume cultivars. By the availability of knowledge about QTLs and markers,
the use of molecular breeding to supplement conventional breeding will certainly give a
new direction to legume breeding programmes. The availability of genome sequence for
several cool season grain legumes has greatly helped in understanding the mechanism
underlying stress tolerance in these crops. Further, it has become possible to achieve better
resolution and improved understanding of genes expressed at transcriptome level under
heat stress by applying NGS technology. It has been demonstrated that both conserved as
well as novel miRNAs are present in legume crops like M. truncatula, chickpea, common
bean, peanut, soybean and lotus that may help in regulation of legume species specific cell
processes associated with heat shock protein (HSF) and heat shock factor (HSF) synthesis.
The metabolomics study can directly exhibit the metabolite changes induced by stress
as compared with transcriptomics. Only few transcriptome studies have identified the
candidate genes that encode synthesis of secondary and primary metabolites involved in
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heat tolerance. Therefore, further progress in this direction needs to apply metabolomics for
exploring the metabolites involved in heat-stress regulation in cool season grain legumes.
In the future, genome editing and base editing using a variety of CRISPR/Cas9 systems
can provide desirable mutants for traits imparting tolerance to heat stress in cool sea-
son grain legumes. Moreover, TILLING, genomics for underground traits, epigenetics
and nanoparticle-based genomics and proteomics have opened up future possibilities for
enhancing the heat-stress tolerance in cool season grain legumes.
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