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Abstract: As one of the greatest agricultural challenges, yield prediction is an important issue for
producers, stakeholders, and the global trade market. Most of the variation in yield is attributed
to environmental factors such as climate conditions, soil type and cultivation practices. Artificial
neural networks (ANNs) and random forest regression (RFR) are machine learning tools that are
used unambiguously for crop yield prediction. There is limited research regarding the application
of these mathematical models for the prediction of rapeseed yield and quality. A four-year study
(2015–2018) was carried out in the Republic of Serbia with 40 winter rapeseed genotypes. The field
trial was designed as a randomized complete block design in three replications. ANN, based on the
Broyden–Fletcher–Goldfarb–Shanno iterative algorithm, and RFR models were used for prediction of
seed yield, oil and protein yield, oil and protein content, and 1000 seed weight, based on the year
of production and genotype. The best production year for rapeseed cultivation was 2016, when the
highest seed and oil yield were achieved, 2994 kg/ha and 1402 kg/ha, respectively. The RFR model
showed better prediction capabilities compared to the ANN model (the r2 values for prediction of
output variables were 0.944, 0.935, 0.912, 0.886, 0.936 and 0.900, for oil and protein content, seed yield,
1000 seed weight, oil and protein yield, respectively).

Keywords: rapeseed; yield; oil content; mathematical modelling; artificial neural network; ran-
dom forest

1. Introduction

High and stable yield and oil content are the most important traits in rapeseed (Brassica
napus L.) breeding programs. According to [1], in the last five years the world average
rapeseed yield was about 2.1 t/ha. Rapeseed seed yield and quality vary depending
on location, cultivar and their mutual interaction [2,3]. Seed yield is mainly affected
by environmental variation such as climatic factors (temperature, precipitation, length
of photoperiod, abiotic stresses), soil type, and cultivation practice (density and time of
sowing, fertilization). Due to the abovementioned factors, seed yield prediction is an
exceedingly challenging task.

Early yield prediction especially comes to focus in years when extreme weather events
unfavourably influence crop yield. Being able to forecast low yield leaves space to make
on-time warning and develop a strategy to maintain a stable food supply chain. It is
forecasted that in the near future precipitation levels will rise in northern Europe, which
is among others expected to reflect on higher seed yield [4]. On the other hand, southern
Europe will suffer from high temperatures accompanied by drought, which both adversely
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affect yield [5]. Ref. [6] tested several regression models and concluded that in all of the
models an increase in precipitation during autumn and winter was negatively correlated
with the yield of winter rapeseed, whereas a temperature rise during flowering had a
positive effect. However, different authors claimed that higher temperatures negatively
affect rapeseed yield [7–9]. Differences in the observed temperature effects may have risen
because of different growing conditions in locations where the trials were set up. Namely,
the trials of [6] were conducted in Denmark, where the climate was cooler with temperate
springs. Hence, it is possible that measured temperatures did not surpass critical values
as in [7–9], when they reflected negatively on seed yield. Seed and silique forming and
development are the most important phenological phases that affect yield, which is mainly
determined before ripening [10].

Yield prediction is an important part of the precision agriculture concept. Knowledge
of weather and plant conditions may assist farmers, big producers, output buyers and
suppliers in the early prediction of crop yield by providing them with valuable information
regarding return and expected financial benefit. Data gained via remote sensing imaging
with unmanned aerial vehicles (UAVs) are not only valuable for monitoring crop condi-
tions, especially changes in crop nitrogen concentration, disease occurrence, flowering time
and pod ripening [11–13], but can also help in estimating final yield. In the study of [14],
remote sensing of vegetation indices with UAV during flowering was used to estimate
rapeseed yield before harvest. They tested various vegetation indices, where the most
accurate had an estimation error under 13%. Machine learning models are handy for differ-
ent tasks, especially when considering living systems in which linear regression models
often disregard complex interactions between variables. In [15], an enhanced vegetation
index, solar-induced chlorophyll fluorescence, climate and different combinations of the
mentioned variables were used as input data to compare the performance of different
models. Non-linear models, such as random forest regression (RFR) and neural networks,
outperformed linear models mostly because relations between examined variables were
non-linear. Ref. [16] emphasized the efficacy of RFR in staple crop yield prediction. An
RFR model that relies on near-infrared vegetation reflectance during several growth stages
was successfully used to forecast rapeseed yield [17]. Apart from regression analysis,
cutting-edge statistical models that use artificial neural network (ANN) models can be
incorporated into yield predictions [18]. In addition, machine learning models are capable
of establishing patterns and correlations among data [19]. Still, they do not reveal the actual
cause of a relationship. This is why the dataset for a model of interest needs to go through
a training phase first.

Lately, ANN was used for the estimation of crop yield and quality [18,20]. ANN
models are considered to have higher accuracy in comparison with regression models [21].
The number of hidden nodes influences the precision of yield prediction in terms that
models with fewer nodes than the starting number of nodes are better [21]. Ref. [22]
reported that machine learning models perceive seed yield as a function of input variables,
such as genotypes and environments. Ref. [23] developed an ANN with weather, soil
and management data as input and predicted maize yield with 80% accuracy. Ref. [24]
predicted genotypic effects of rapeseed lines and hybrids with the aid of SNP markers.
Since the correlation of genetic prediction with phenotype for yield-related traits produced
similar values, such as estimated heritability, it was highlighted that this approach could
be used to predict best-performing genotypes [24].

ANN is used as an additional tool to assist in the seed classification of rapeseed vari-
eties [25,26]. In [18], input consisted of quantitative (precipitation, temperatures, applied
fertilizers) and qualitative data (fertilizer type, liming, tillage type, sowing date and previ-
ous forecrop). Ref. [18] tested three models that differed in terms of predictive dates for
plant development stages to foresee rapeseed yield.

To the best of the authors’ knowledge, this is the first study to use the ANN model to
predict yield-related traits as well as oil and protein content in rapeseed. The objective of
this study was to investigate the possibility of predicting oil and protein content, seed yield,
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oil and protein yield, and 1000 seed weight, based on the year of production and genotype,
using artificial neural network (ANN) and random forest regression (RFR) models.

2. Materials and Methods
2.1. Plant Material and Trial Design

Six traits related to yield and seed quality were surveyed (i.e., oil and protein content
(OC, PC), seed yield (SY), oil and protein yield (OY, PY), and thousand seed weight (TSW))
on 40 winter-type rapeseed genotypes (Table 1) during four consecutive years (2015–2018).

Table 1. Winter rapeseed genotypes tested during 2015–2018.

Number Genotype Type of Material Origin Registration Year

1 NS-H-R-1 hybrid Serbia n.r. *
2 NS-H-R-2 hybrid Serbia n.r.
3 NS-H-R-3 hybrid Serbia n.r.
4 Banaćanka cultivar Serbia 1998
5 Slavica cultivar Serbia 2003
6 Valeska tamna line Sweden n.r.
7 Valeska svetla line Sweden n.r.
8 Zlatna cultivar Serbia 2008
9 NS-L-74 line Serbia n.r.
10 Branka cultivar Serbia 2007
11 Express cultivar Germany 1993
12 NS-L-7 line Serbia n.r.
13 Nevena cultivar Serbia 2008
14 Valeska cultivar Sweden EU **
15 Ilia cultivar Serbia 2011
16 Kata cultivar Serbia 2006
17 Nena cultivar Serbia 2005
18 NS-L-31 line Serbia n.r.
19 NS-L-126 line Serbia n.r.
20 NS-L-33 line Serbia n.r.
21 NS-L-128 line Serbia n.r.
22 Svetlana cultivar Serbia 2016
23 Jasna cultivar Serbia 2009
24 NS-L-101 line Serbia n.r.
25 Zorica cultivar Serbia 2010
26 NS-L-102 line Serbia n.r.
27 NS-L-134 line Serbia n.r.
28 NS-L-32 line Serbia n.r.
29 NS-L-136 line Serbia n.r.
30 NS-L-137 line Serbia n.r.
31 NS-L-138 line Serbia n.r.
32 NS-L-251 line Serbia n.r.
33 NS-L-210 line Serbia n.r.
34 NS-L-44 line Serbia n.r.
35 NS-L-45 line Serbia n.r.
36 NS-L-46 line Serbia n.r.
37 NS-L-47 line Serbia n.r.
38 Jelena cultivar Serbia 2011
39 Forward line Serbia n.r.
40 Maidan line Serbia n.r.

* n.r. non-registered; ** EU registered within the European Union.

The trial was set up as a randomized complete block design with three replicates at
Rimski šančevi, Serbia (45◦19′53.7′′ N 19◦50′12.6′′ E). The size of the experimental plot was
sized 4 × 1.5 m with 55–65 plants/m2 at the harvest. Sowing and harvesting were carried
out in the optimum times, which are in September and June in each season. Prior to sowing,
the soil received an adequate amount of NPK 15:15:15 (nitrogen, phosphorus, potassium)
fertilizer (250–450 kg/ha), with respect to soil analysis results. Standard production technol-
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ogy was applied during plant cultivation. The yield was surveyed on each plot. Thousand
seed weight was calculated by counting subsamples of 200 seeds per plot per replicate.
Oil content in dry seeds was determined using Newport 4000 NMR and is represented
as % of dry matter (d.m.). Nitrogen content was determined by the Dumas combustion
method (EN ISO 16634-1:2008) and expressed in % of dry matter. Nitrogen content in %
was multiplied with a conversion factor 6.25 to gain the overall protein content. Oil and
protein yield in kg/ha were obtained by multiplying seed yield by seed oil and protein
content, respectively.

Meteorological data (average daily temperature and precipitation) were collected from
the meteorological station “Rimski šančevi” of the Republic hydrometeorological service of
Serbia, which is located near the experimental field.

The colour plot diagram for mean genotypic values of the rapeseed samples was
calculated and plotted using R software v.4.0.3 (64-bit version). The corrplot instruction was
applied, with the “circle” method enabled, as a graphical tool to represent the correlation
between the mean genotypic values of the observed samples.

Two different machine learning algorithms were employed to foresee the oil and
protein content, seed yield, oil and protein yield, and 1000 seed weight based on the year of
production and genotype, including ANN and RFR. These two machine learning methods
are broadly utilized and proved to be effective [27,28].

2.2. ANN Modeling

The artificial neural network model is inspired by the structure and function of the
neural network of human brain. An ANN consists of three input layers in addition to
hidden and output layers. The nodes of such a network are interconnected and pass on
information in the same way as neurons do in a brain. Our ANN model was built using
data from Table 1. The inputs were the year of production and genotype. A multi-layer
perceptron model (MLP) scheme, which consisted of three layers, was used for modelling
two artificial neural network models (ANN) for the prediction of oil and protein content,
seed yield, oil and protein yield, and 1000 seed weight, based on the year of production
and genotype. According to the literature, the ANN models were proven as quite capable
of approximating non-linear functions [29–32]. This is important for the study of living
organisms where many relations between the examined variables are complex and non-
linear. An important advantage of the ANN model is its ability to derive previously
unseen relationships. Before the calculation, both input and output data were normalized
(according to the min–max normalization scheme) to improve the behaviour of the ANN.
During this iterative process, input data were repeatedly presented to the network [33,34].
The Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm was used as an iterative method
for solving unconstrained non-linear optimization during the ANN modelling.

The experimental database for the ANN was randomly divided into training, cross-
validation, and testing datasets (with 60%, 20%, and 20% of experimental data, respectively).
The training dataset was used for the learning cycle of the ANN and also for the evaluation
of the optimal number of neurons in the hidden layer and the weight coefficient of each
neuron in the network. A series of different topologies were used, in which the number
of hidden neurons varied from 5 to 10, and the training process of the network was run
100,000 times with random initial values of weights and biases. The optimization process
was performed based on validation of error minimization. It was assumed that successful
training was achieved when the learning and cross-validation curves approached zero.

Coefficients associated with the hidden layer (weights and biases) were grouped in
matrices W1 and B1, respectively. Similarly, coefficients associated with the output layer
were grouped in matrices W2 and B2. It is possible to represent the neural network by using
matrix notation (Y is the matrix of the output variables, f 1 and f 2 are transfer functions in
the hidden and output layers, respectively, and X is the matrix of input variables) [35]:

Y = f1(W2 · f2(W1 · X + B1) + B2) (1)
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Weight coefficients (elements of matrices W1 and W2) were determined during the
ANN learning cycle. They were updated using optimization procedures to minimize the
error between the network and experimental outputs [33,36,37], according to the sum of
squares (SOS) and BFGS algorithms, used to speed up and stabilize convergence [38]. The
coefficients of determination were used as parameters to check the performance of the
obtained ANN model.

The collected data for ANN modelling were processed statistically using the software
package StatSoft Statistica, ver. 10.0, Palo Alto, CA, USA.

2.3. RFR Modeling

The random forest model (RF) is a broadly employed machine learning algorithm that
is constructed upon decision trees to predict outputs according to prediction variables [39].
The RF model can be utilized for classification or regression purposes. The random forest
regression method is used for the mean prediction of individual trees, in consistence with
decision trees developed according to the training dataset [40]. Both ANN and RFR as
machine learning models have limitations regarding interpretation, which is very important,
particularly in life sciences. Still, they offer valuable insights not only into yield assessment,
but also into seed quality parameters, such as oil and protein content. In addition, the RF
model can reveal the importance of features. The RFR models were constructed upon the
data presented in Table 1. Similarly to the ANN model, the inputs for the RFR models were
the year of production and genotype. During random forest regression model calculation
for the prediction of seed yield, oil and protein yield, 1000 seed weight, and oil and protein
content, based on the year of production and genotype, a large set of decision trees was
constructed and each tree was built according to the specific bootstrap sample within a
training dataset [41]. In this study, the bootstrap function was employed to randomly split
the dataset into homogeneous subsets, namely training and test subsets, which explained
60% and 40% of the entire data, respectively [42]. New sub-samples were selected from the
input sample dataset and multiple trees were added to the RFR structure to fit the obtained
sub-samples. During the training cycle, the RFR model averaged the results of the created
trees in order to minimize the error of prediction [28]. During the RFR calculation, the
number of trees parameter was set to 100, 200, 300, 400, 500, and 10,000, while the random
test data proportion was set to 40% and the sample proportion was 50%.

The building of the RFR models was performed using StatSoft Statistica, ver. 10.0,
Palo Alto, CA, USA.

2.4. The Accuracy of the Model

The numerical verification of the developed models was tested using the coefficient
of determination (r2), reduced chi-square (χ2), mean bias error (MBE), root mean square
error (RMSE), and mean percentage error (MPE). MBE and RMSE have the same unit-like
variable. These commonly used parameters can be calculated as follows [43]:

χ2 =

N
∑

i=1
(xexp,i − xpre,i)

2

N − n
, (2)

RMSE =

[
1
N
·

N

∑
i=1

(xpre,i − xexp,i)
2

]1/2

, (3)

MBE =
1
N
·

N

∑
i=1

(xpre,i − xexp,i), (4)

MPE =
100
N
·

N

∑
i=1

(

∣∣xpre,i − xexp,i
∣∣

xexp,i
), (5)
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SSE =
N

∑
i=1

(xpre,i − xexp,i)
2, (6)

AARD =
1
N
·

N

∑
i=1

∣∣∣∣∣ xexp,i − xpre,i

xexp,i

∣∣∣∣∣, (7)

where xexp,i stands for the experimental values and xpre,i are the predicted values calculated
by the model; N and n are the number of observations and constants, respectively.

3. Results
3.1. Yield-Related Components

Seed and oil yield, as well as oil content, had the highest values in 2016. That year was
favourable for rapeseed growing and over half of the examined genotypes yielded more
than 2950 kg/ha. According to four-year mean values, Jelena and NS-L-32 belong to the
same group with the highest seed yield as determined by Duncan post hoc test (Table 2).
On the other hand, NS-L-45 exhibited the lowest yield. The top two genotypes with the
highest oil yield were the same as for seed yield, namely Jelena and NS-L-32. NS-L-45 had
the lowest oil yield. Protein yield varied among years, whereby in 2016 and 2018 their
average values differed by only 19.44 kg/ha. The average protein yield was 444.93 kg/ha.
The highest protein yield was noted for NS-L-32 and NS-L-136 and the lowest for Kata
and NS-L-45. The mean genotypic value for 1000 seed weight in the period 2015–2018 was
4.28 g. NS-L-44 had the highest and Express the lowest 1000 seed weight. The mean seed
oil content ranged between 41.57% and 46.85%, with a grand mean of 44.41%. The highest
yearly average of 46.83% was recorded in 2016 and the lowest, 41.56%, in 2015. Protein
content was the highest (22.57%) in 2018 and the lowest (18.24%) in 2016. Valeska svetla
had the highest seed protein content (23%), which was 2% more than the grand mean for
all other genotypes.

3.2. Correlation Analysis

Statistically significant correlations (p≤ 0.05) were found for all analysed traits. During
2015–2018, oil content was in a strong negative correlation with protein content (Figure 1).
The size and the circle’s colour depend on the correlation coefficients; if the colour is blue,
a positive correlation was achieved, and on the contrary the red colour represents the
negative correlation. Additionally, the circle’s size is increased with the absolute value of
the correlation coefficient. The highest positive correlations were found between seed and
oil yield (r = 0.995), seed and protein yield (r = 0.943), and oil and protein yield (r = 0.921).
Oil content was positively correlated with seed yield, 1000 seed weight, and oil and protein
yield, whereas correlation with all traits except 1000 seed weight was strong. Interestingly,
only 1000 seed weight was weakly correlated with all traits, negatively with protein content
and positively with the other traits.

3.3. ANN Model

The acquired optimal neural network model showed good generalization capabilities
for the experimental data, and could accurately predict the oil and protein content, seed
yield, oil and protein yield, and 1000 seed weight, based on the year of production and
genotype. The number of neurons for the ANN model was eight (network MLP 2-8-6) to
obtain the highest values of r2 (during the training cycle r2 for output variables were: 0.742;
0.757; 0.853; 0.705; 0.872 and 0.807, for oil and protein content, seed yield, 1000 seed weight,
oil and protein yield, respectively); see Table 3.
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Table 2. Mean genotypic values for six analysed traits during four-year period.

Genotype OC (% d.m.) PC (% d.m.) SY (kg/ha) OY (kg/ha) PY (kg/ha) TSW (g)

NS-H-R-1 44.16 h 20.99 n 2006.00 ef 915.12 fghi 421.59 fgh 4.26 jk

NS-H-R-2 44.58 k 21.04 o 2154.25 lm 978.96 mno 442.81 klmn 4.54 st

NS-H-R-3 43.78 f 20.73 k 2446.07 u 1084.90 v 495.46 s 4.29 kl

Banaćanka 44.15 h 21.01 no 2044.96 fghi 918.23 ghi 423.93 fgh 4.49 rs

Slavica 44.30 i 20.58 i 2198.08 lmn 979.17 mno 453.29 no 4.10 efg

Valeska tamna 41.57 a 22.98 ć 1999.24 ef 833.85 b 456.51 o 4.74 u

Valeska svetla 42.67 c 23.08 č 2064.17 ghij 892.14 efg 471.10 pq 4.58 t

Zlatna 45.59 s 20.62 j 2074.53 hij 944.51 jk 422.48 fgh 4.08 def

NS-L-74 45.25 op 20.06 c 2017.42 ef 927.32 hij 404.87 cd 4.40 pq

Branka 45.31 pq 19.76 b 2027.92 efgh 935.99 ijk 392.77 b 4.13 fgh

Express 45.18 no 20.14 d 2085.11 ijk 952.32 kl 414.03 de 3.91 a

NS-L-7 46.55 t 20.62 j 2287.5 qr 1075.03 uv 467.49 p 4.44 qr

Nevena 43.55 e 21.55 t 2236.33 mno 998.13 opqr 474.58 pqr 4.38 opq

Valesca 43.31 d 22.05 x 2021.06 efg 889.76 ef 439.72 jklm 4.25 jk

Ilia 45.35 q 20.56 i 2213.56 mn 1013.71 qr 446.58 lmno 4.13 fgh

Kata 45.57 s 20.83 l 1838.67 b 858.55 cd 371.19 a 4.14 fgh

Nena 45.15 mn 20.88 m 2109.67 jkl 969.56 lmn 436.80 ijkl 4.30 klm

NS-L-31 45.09 m 21.23 pq 1987.58 de 903.78 efgh 422.75 fgh 4.01 c

NS-L-126 44.83 l 21.41 s 1947.08 d 878.91 de 409.28 cde 4.24 jk

NS-L-33 45.35 q 19.64 a 2294.92 r 1052.50 tu 448.68 mno 3.98 bc

NS-L-128 44.16 h 22.13 y 2012.5 ef 901.88 efgh 433.57 hijk 4.14 fgh

Svetlana 43.54 e 21.96 w 2190.08 lm 958.09 klm 479.64 qr 4.14 fgh

Jasna 45.45 r 20.35 g 2123.51 kl 986.34 nop 425.25 fgh 4.33 lmno

NS-L-101 43.72 f 21.54 t 2017.42 efg 893.089 efg 426.03 fghi 4.37 nop

Zorica 44.8 l 20.74 k 2349.5 s 1061.10 tuv 484.13 r 4.57 t

NS-L-102 46.85 u 19.78 b 2085.92 ijk 990.96 nopq 404.01 bcd 4.16 ghi

NS-L-134 45.26 op 20.22 e 2190.65 lm 1000.91 opqr 440.87 jklm 4.37 nop

NS-L-32 44.34 ij 21.32 r 2555.00 w 1139.47 w 536.93 t 4.31 klmn

NS-L-136 44.32 ij 21.05 o 2511.02 v 1128.19 w 527.48 t 4.02 cd

NS-L-137 43.54 e 20.45 h 2357.33 s 1043.67 st 473.13 pqr 4.18 hi

NS-L-138 43.89 g 20.04 c 2216.08 mn 988.25 nopq 430.04 ghij 3.92 ab

NS-L-251 45.48 r 20.30 f 2242.58 nop 1022.38 rs 451.46 mno 4.37 lmno

NS-L-210 43.56 e 21.61 u 1894.07 c 841.37 bc 401.61 bc 4.40 pq

NS-L-44 43.90 g 21.64 u 2368.58 st 1056.99 tu 501.59 s 5.02 v

NS-L-45 43.75 f 21.81 v 1743.5 a 776.75 a 371.95 a 4.48 rs

NS-L-46 42.11 b 22.40 z 1808.34 b 773.54 a 399.90 bc 4.16 ghi

NS-L-47 44.41 j 21.01 no 2410.75 tu 1084.32 v 497.78 s 4.49 rs

Jelena 45.32 pq 20.08 c 2566.58 w 1162.62 x 501.73 s 4.04 cde

Forward 43.52 e 21.22 p 2010.84 ef 893.89 efg 419.14 efg 4.31 klmn

Maidan 43.34 d 21.27 q 2273.86 pqr 1006.60 pqr 475.04 pqr 4.21 ij

Mean 44.41 21.02 2149.36 967.82 444.93 4.28
Minimum 39.24 16.66 533.33 209.60 113.17 3.30
Maximum 50.20 24.67 3766.67 1745.85 693.61 5.77

Values in the same column followed with the same letter are not significantly different at the p ≤ 0.05 level
according to Duncan’s post-hoc test. OC—oil content; d.m.—dry matter; PC—protein content; SY—seed yield;
OY—oil yield; PY—protein yield; TSW—1000 seed weight.

The potential of the ANN model to predict yield and quality components is pre-
sented by scatter plots (Figure 2). The distribution pattern of predicted values differed in
comparison with the scatter plots obtained by the RFR model (Figure 3).
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Table 3. Artificial neural network model summary (performance and errors), for training, testing,
and validation cycles.

Net.
Name

Performance Error Train.
Alg.

Error
Func.

Hidden
Act.

Output
Act.Train. Test. Valid. Train. Test. Valid.

MLP
2-8-6 0.788 0.782 0.784 49.749 50.173 52.481 BFGS 95 SOS Logistic Logistic

Performance term represents the coefficients of determination, while the error term indicates a lack of data for the
ANN model. Net.—network; Train.—training; Test.—testing; Valid.—validation; alg.—algorithm; func.—function;
act.—activation
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Performance Error Train. 
Alg. 

Error 
Func. 

Hidden 
Act. 

Output 
Act. Train. Test. Valid.  Train. Test. Valid. 

MLP 2-8-6 0.788 0.782 0.784 49.749 50.173 52.481 BFGS 95 SOS Logistic Logistic 
Performance term represents the coefficients of determination, while the error term indicates a 
lack of data for the ANN model. Net.—network; Train.—training; Test.—testing; Valid.—valida-
tion; alg.—algorithm; func.—function; act.—activation 

The potential of the ANN model to predict yield and quality components is presented 
by scatter plots (Figure 2). The distribution pattern of predicted values differed in com-
parison with the scatter plots obtained by the RFR model (Figure 3). 

Figure 1. Colour correlation graph between genotypic values for six analysed traits during four-year
period. Numerical data represent the coefficients of correlations.

The obtained ANN model for the prediction of output variables was built upon
78 weights-bias coefficients due to the high nonlinearity of the observed system [44,45].

The goodness of fit between experimental measurements and model-calculated out-
puts, represented as ANN performance, is shown in Table 4. For seed yield, RMSE was
303.25 kg/ha, which accounts for 14.11% of the overall observed yield mean. The RMSE
for oil yield and oil content was 139.88 kg/ha and 1.25%, respectively, which accounts for
14.45% and 2.81% of the overall observed oil yield and content, respectively.

The ANN model predicted experimental variables reasonably well for a broad range
of the process variables. For the ANN model, the predicted values were very close to the
measured values in most cases, in terms of r2 values.
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Figure 2. Comparison between experimentally obtained and ANN model predicted values of (a) oil
and (b) protein content, (c) yield, (d) 1000 seed weight, (e) oil yield, and (f) protein yield.

3.4. RFR Model

The acquired optimal random forest models showed good prediction capabilities for
the experimental data, and could be used to adequately foresee the oil and protein content,
seed yield, oil and protein yield, and 1000 seed weight, based on the year of production
and genotype. The number of trees for the RFR models were 1000, 590, 590, 1000, 200, and
1000, respectively for oil and protein content, seed yield, 1000 seed weight, oil and protein
yield, to obtain the highest values of r2 (during the training cycle, r2 values for the output
variables were 0.944, 0.935, 0.912, 0.886, 0.936, and 0.900, respectively); see Table 5.
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Figure 3. Comparison between experimentally obtained and RFR model predicted values of (a) oil
and (b) protein content, (c) yield, (d) 1000 seed weight, (e) oil yield, and (f) protein yield.

Table 4. The goodness of fit tests for the developed ANN model.

Output
Variable χ2 RMSE MBE MPE SSE AARD r2

Oil content 1.615 1.247 −0.101 2.188 247.112 164.245 0.715
Protein
content 1.090 1.024 0.001 3.719 167.920 198.625 0.726

Seed yield 9.6 × 104 303.249 −18.881 14.340 1.5 × 107 5.6 × 104 0.830
1000 seed

weight 0.087 0.290 −0.002 5.348 13.454 61.797 0.693

Oil yield 2.0 × 104 139.881 −6.242 15.026 3.1 × 106 2.5 × 104 0.851
Protein yield 4.2 × 103 63.798 −3.269 13.918 6.5 × 105 1.3 × 104 0.785

χ2—reduced chi-square; RMSE—root mean square error; MBE—mean bias error; MPE—mean percentage error;
SSE—sum of squared errors; AARD—absolute average relative deviation; r2—coefficient of determination.
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Table 5. The goodness of fit tests for the developed RFR model.

Output Variable χ2 RMSE MBE MPE SSE AARD r2

Oil content 0.344 0.581 0.041 0.749 161.021 185.343 0.944
Protein content 0.256 0.501 0.002 1.768 120.560 307.080 0.935

Seed yield 5.3 × 104 227.082 26.850 9.080 2.4 × 107 1.8 × 105 0.912
1000 seed weight 0.033 0.179 0.003 3.169 15.318 66.079 0.886

Oil yield 9.4 × 103 95.937 13.992 7.889 4.3 × 106 8.1 × 104 0.936
Protein yield 2.0 × 103 44.431 1.704 9.006 9.5 × 105 3.6 × 104 0.900

The RFR model showed much better prediction characteristics for oil and protein
content, seed yield, oil and protein yield, and 1000 seed weight based on the year of
production and genotype in comparison with the ANN model (Tables 4 and 5).

The RFR and ANN models had an insignificant lack of fit tests, which means the
models satisfactorily predicted output variables.

4. Discussion

In this research, 40 rapeseed genotypes were analysed during four years for the
assessment of yield and quality components. NS-L-45 was the lowest yielding genotype,
probably due to low performance in 2015, which was below 1000 kg/ha. In this study
the following pattern was observed: genotypes that had the highest (Jelena, NS-L-32) and
the lowest yield (NS-L-45) also had the highest and lowest oil yield. Ref. [10] reported
that at the same environments (locations) and years, the highest seed and oil yield were
recorded. Since they evaluated only three genotypes, our pattern cannot be extrapolated
and discussed for comparison of genotype performance. In 2016, rapeseed had the highest
yearly mean value for oil content (46.83%). Throughout May of the same year, during
flowering and at the beginning of the seed filling phase, precipitation was higher than
the long-term average (64.6 mm for the period 1964–2014). Although precipitation is one
of the main factors that positively influence oil content in rapeseed [46,47], it should be
kept in mind that it is not the only factor influencing oil content, since in years with high
precipitation during seed filling oil content may not be as high as expected [48]. This is in
line with our study, as in May 2015 precipitation was three times higher than the long-term
average and the oil content was lowest in that year. Considering that oil and protein
content are negatively correlated traits [49–51], 2016, the year with the lowest average
protein content, was advantageous in terms of oil content. Still, not all analysed genotypes
with high oil content had a lower share of proteins, e.g., in 2015 NS-L-7 had 2% higher oil
content and 0.71% higher protein than average, and in 2017 NS-H-R-2 had both higher
oil and protein content relative to average year values for that year. These genotypes are
regarded as good resources for further breeding towards high oil and protein content,
because their protein content does not sink abruptly with increasing oil content, as in the
case of other genotypes.

Most traits that are used for rapeseed breeding are polygenic and represent the result of
the interaction of several components. Knowledge regarding trait correlations is important
for success in breeding. Due to the low heritability of yield, indirect selection appears to
be the best breeding solution. The strength of the correlation between two analysed traits
may differ in different agroecological growing conditions. A strong negative correlation
between oil and protein content was previously reported [48,52,53]. An increase in oil
content in the seed can arise whether at the expense of decreasing protein content, or
by reduction of other seed components [49]. Oil content is under the control of a large
number of genes that have additive and non-additive effects, whereas the environment
has an impact only on additive components of genetic variance [54]. Refs. [55,56] also
reported a high positive correlation between oil content and seed yield. However, unlike
our results, they did not find a significant correlation between oil content and oil yield.
In relation to a high positive correlation between seed yield on the one hand, and oil and
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protein yield on the other, it can be concluded that with higher seed yield oil and protein
yield tends to increase, as can be realized from Figure 1. The analysis of 20 rapeseed
traits with path analysis revealed 1000 seed weight to be the most important trait that
influences yield [57]. A positive relationship between 1000 seed weight and seed yield was
also reported by [58,59]. Results from [60] are contrasting in terms of claiming a negative
correlation between these traits. Observed differences probably occurred because of the
stronger influence of environmental (weather) variables on yield and 1000 seed weight over
the analysed years. It can be hypothesized that in years with adverse weather conditions,
rapeseed plants will decrease the number of seeds per silique, but seed size may increase,
thus resulting in higher seed weight.

Similar to our dataset, which consisted of temperature, precipitation, and cultivar data,
on the list of variables [19] that were most often used for prediction of crop yield using
different machine learning models, temperature was positioned first, rainfall third, and
crop information (e.g., cultivar, crop density) fourth. The process of seed filling is generally
susceptible to environmental conditions, especially temperature and precipitation. Thus,
we assume that in that period information regarding weather conditions is more important
than crop information for yield prediction.

The use of classic statistical procedures for the analysis of both dependent and indepen-
dent variables is not as efficient as the use of machine learning models. Machine learning
models make it possible to predict a larger number of variables. Non-linear machine
learning models for the evaluation of yield-related traits enable deciphering non-linear
relations among dependent and independent variables [61]. Prediction models can be
efficiently used for rapeseed and other crop yield prediction, offering the possibility for
early yield assessment, thus enhancing farmers in the decision-making process toward
optimum production. ANN and RFR, among other machine learning models, cope well
with the analysis of complex data. The developed mathematical models provided an
efficient insight in the prediction of oil and protein content, seed yield, 1000 seed weight, oil
and protein yield, and the influences of production parameters, such as year of production
and crop genotype, on the abovementioned traits. With the aid of these models, it is easier
to predict the effects of different weather circumstances, or of the selected cultivar on yield
and quality, as well as to choose which cultivar will have the best performance in a certain
environment. Knowledge regarding cultivars’ reaction to specific environmental conditions
is valuable for the estimation of their final performance. Additionally, information on
weather, such as temperatures and precipitations, is accessible to farmers, and on the other
hand, cultivar/hybrid recommendation and production technology can be obtained from
agricultural extension service. All of this should be incorporated into applicable models
and used for yield forecasting.

ANN was successfully used for the prediction of oil content in other species, such
as sesame (Sesamum indicum L.) and ajowan (Carum copticum L.) [62,63]. The best fit of
predicted to measured traits in our ANN model was observed for oil yield (r2 = 0.851).
Negative MBE values occurred for all traits except protein content. This indicates that the
predicted values were smaller than the observed ones. SOS values obtained with the ANN
model were of the same order of magnitude as experimental errors for output variables
reported in the literature [33,37].

A high r2 is indicative that the variation was accounted for and that the data fitted
the proposed RFR model satisfactorily [64,65]. The RMSE for seed yield was 227.08 kg/ha,
which represents 10.56% of the overall observed yield mean. When comparing this re-
sult with the RMSE for the ANN model, it can be noticed that the RFR model offered
a more acceptable RMSE. This finding also goes in favour of using RFR for rapeseed
yield prediction.

5. Conclusions

The best performances of the analysed rapeseed genotypes (e.g., highest seed and
oil yield) were achieved in 2016. The highest positive correlation was found between
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seed and oil yield. In order to forecast yield and quality components, machine learning
models were developed based on available genotype and weather data. The current study
suggests that RFR and ANN modelling can be successfully exploited for the purpose of
rapeseed oil and protein content, seed yield, oil and protein yield, and 1000 seed weight
prediction, based on the year of production and genotype. The artificial neural network
model showed itself to be adequate for the prediction of output variables. The highest r2

values were obtained with the RFR model. The mentioned r2 values justified the use of the
developed models in the prediction of the observed parameters. According to the results,
the RFR models were more accurate and their results were closer to the experimental data,
in comparison with the ANN models. It is assumed that during the phase of seed filling,
input data regarding environmental conditions are more valuable for yield prediction. The
incorporation of more input data can improve the efficiency of both tested models. The
tested models proved their usefulness for yield prediction and suggested the possibility to
use them for the prediction of oil and protein content. This study has the potential to direct
new ways for promising research related to rapeseed quality prediction, such as fatty acids
and glucosinolates contents. In the end, it will encourage and promote research related to
the use of machine learning algorithms for yield forecasts.
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