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The phenomenon of genotype by environment interaction (GEI) represents permanent 

interest for breeders, geneticists and biometricians with its practical and theoretical 

aspects. We investigated GEI for grain yield of medium early maturity maize (Zea mays 

L.) hybrids from the official variety trial network by the Department of Protection and 

Recognition of Varieties of the Republic of Serbia that includes experimental maize 

hybrids on eight sites over two years. Environmental variables explained 77.6% and 

60.7% of the GEI variation for two consecutive years, respectively. Factorial regression 

combined with stepwise procedure revealed the model which includes variables 

precipitation in July (pr7), minimum temperature in May (mnt5), maximum temperature 

in May (mxt5) and insolation hours in April (sh4), in 2004, and environmental index 

(EI) and average temperature in September (mt9) in 2005, to be the most explanatory 

models in the region of Vojvodina (Serbia) in two consecutive years. These results 

provide a base for further research in GEI and stability analysis, and are a useful tool in 

characterizing the sub-regions of maize growing area and extending the existing results 

to new sites. 

Keywords: genotype by environment interaction, climatic variables, stability 

analysis, multi-environment trials. 

 

INTRODUCTION 
Maize represents one of the most important grain crops, with its global production 

exceeding 1×10
9 
t (FAOSTAT, 2018). In Serbia alone, it was grown on more than 1 million ha in 

2016 (www.rzs.gov.rs). It represents a staple in most parts of the world, and as it is economically 
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one of the most important crops, successfully grown and well adapted for every environment in 

its wide growing area; the importance of it reflected in many of the state policies. 

The ultimate goal of every individual farmer is to achieve the highest possible grain yield 

on their field from year to year. The efforts of breeding companies on the other hand are focused 

on the creating a maize hybrid that will be successfully commercialized - high yielding in most 

of the agro-ecological zones, and with the yield that will be consistent from year to year. The 

successful breeding of maize hybrids and their dissemination therefore requires multi-

environment trials (METs) (YAN, 2014). 

The phenomenon of genotype by environment interaction (GEI) is characteristic of multi-

environment trials (MET) and represents permanent interest for breeders and biometricians with 

its practical and theoretical aspects (GAUCH, 2013; YAN, 2014). Genotype by environment 

interaction is said to exist when the phenotypic response caused by a change in environment is 

not the same for all genotypes (MALOSETTI et al., 2013). For a long time this problem has been 

overcome by stratification of environment and allocation of different genotypes to different 

environments (MIROSAVLJEVIĆ et al., 2014; ĆIRIĆ et al., 2017; BRANKOVIĆ-RADOJĈIĆ et al., 

2018).  

However, in large breeding programs, intended for a global market, ”unpredictable” year-

to-year fluctuations can cause large genotype by year and genotype by location by year 

interactions and may require other solutions. Appropriate strategy in such situations would be the 

identification of cultivars that are both high yielding and stable in performance across multiple 

environments (sites or years or sites-years combination), or that have specific adaptation, (BABIĆ 

et al., 2011; STOJAKOVIĆ et al., 2015; MITROVIĆ et al., 2018). “Stable genotype” is the term used 

to describe a genotype that has constant performance over environments (LEIBMAN et al., 2014). 

Desirable genotypes are therefore the ones that are both stable and high yielding: capable to 

produce high yields over wide range of different production environments (BANJAC et al., 2015; 

BRANKOVIĆ-RADOJĈIĆ et al., 2018). 

The benefits of defining the variability of the interaction, as the function of the variation 

between the environments and genotypes had become obvious in the mid-20th century. This 

concept has been applied in the research in numerous plant species over the years (NZUVE et al., 

2013; MIROSAVLJEVIĆ et al., 2014; BANJAC et al., 2015; ĆIRIĆ et al., 2017). 

Information on individual environmental covariates is needed to understand the nature 

and causes of genotype × site interaction as well as to exploit it (KANG et al., 2005). Collecting 

of additional information on climatic, soil, biotic or crop management factors of test sites in 

METs and morpho-physiological traits of genotypes can prove extremely valuable for: (i) 

providing reasons for the occurrence of GEI; (ii) providing a means for characterizing the sub-

regions and extending the results to new sites; (iii) enlarging the set of possibly adopted models 

for analysis of adaptation; and (iv) identifying adaptive traits and assessing their potential as 

indirect selection criteria for breeding (ANNICCHIARICO, 2002).  

Factorial regression models are commonly used linear models that explain GEI by 

differential cultivar sensitivity to explicit external environmental variables (environmental 

characterization) and are able to make hypothesis about the influence of external variables on 

GEI of grain yield that can be statistically tested (VARGAS et al., 1999). An analytical assessment 

of GEI by factorial regression can be regarded as a predictive strategy for recommendation 
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purposes and the information supplied by factorial regression analyses could be easily 

implemented into geographical databases in which yearly environmental data is applied over a 

representative temporal scale (VOLTAS et al., 2005). Application of factorial regression using 

genotypic and environmental variables in maize MET trials was reported by many authors 

(BUTRON et al., 2004; MALVAR et al., 2005; SANDOYA et al., 2010; LEE et al., 2016) and 

successfully used in maize breeding programs. 

The objective of this study was: (i) to dissect GEI for grain yield in the maize multi-site 

trails using additional climatic variables and factorial regression modeling, therefore getting the 

better understanding of the factors that influence the results of the maize yield test trials and (ii) 

to identify adaptive traits and assess their potential as indirect selection criteria for future 

breeding programs, obtaining the superior, high yielding hybrid that is stable across the 

environments. 

 

MATERIALS AND METHODS 

Experimental data 

Genetic material used in this research was represented by 21 experimental medium early 

maturity maize hybrids tested in official variety trials organized by the Department for Protection 

and Recognition of Varieties of Ministry of Agriculture, Water Management and Forestry of the 

Republic of Serbia during 2004 and 2005. Experimental data were mean grain yields (t ha
-1

), at 

14% moisture, of tested hybrids over eight sites. The names of the test sites are shown in Table 1 

along with their codes, latitudes, longitudes and soil characteristics. 

 

Table 1. Description of the sites in the multi-site trial in Serbia during 2004-2005 period 

Site 
Abbrevi

ation 
Longitude Latitude Altitude 

pH 

KCl 

pH 

H2O 

Org. 

matt. % 

N % P2O5 

mg/100g 

K2O 

mg/100g 

Beĉej BC 45°37'0''N 20°02'06''E 85 7.60 8.08 2.81 0.209 45.50 34.96 

Kikinda KI 45°50'0''N 20°27'33''E 85 7.08 7.95 3.72 0.255 6.52 50.00 

Panĉevo PA 44°52'0''N 20°39'33''E 80 7.50 8.34 3.53 0.242 27.5 20.6 

Rimski 

Šanĉevi 
RS 45°20'0''N 19°50'59''E 84 7.03 7.99 3.16 0.217 25.67 32.07 

Sremska 

Mitrovica 
SM 44°59'0''N 19°37' E 81 7.42 8.25 2.20 0.163 15.35 23.51 

Sombor SO 45°47'0''N 19°06'44''E 90 7.25 8.12 2.72 0.202 16.5 20.99 

Zemun 

Polje 
ZP 44˚87'0''N 20°19'E 80 7.37 8.19 3.39 0.232 14.71 18.60 

Zajeĉar ZA 43˚55'0''N 22°17'05''E 132 3.97 5.49 1.95 0.168 8.41 29.10 
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The experimental design was randomized complete block design with four replications 

and elementary plot size of 10 m
2
. Standard cultural and agronomic practices were applied at all 

sites. Nitrogen, phosphorus, and potassium fertilizers were applied according to fertilizer 

recommendations for each site. Plant density for each hybrid was 60.606 plants ha
-1

.  

Data on climatic variables during 15 April - 15 October vegetation period for both years 

were provided by the Republic Hydro-meteorological Service of Serbia. Maximum temperature 

(mxt), minimum temperature (mnt), mean temperature (mt), precipitation (pr), relative humidity 

(rh) and insolation hours (sh) average values for test sites were used for analysis and labeled with 

the numbers accordingly: 4 for April, 5 for May, 6 for June, 7 for July, 8 for August, 9 for 

September and 10 for October, for every variable type (Supplementary table 1 and 2). 

 

Statistical analyses 

Two-way fixed effects ANOVA was used based on randomized complete block design 

(RCBD) for the analysis of data sets. The empirical mean response (
ijy ) of the i-th hybrid (i = 1, 

2, . . ., I) in the j-th site ( j = 1, 2, . . ., J) with n replications in each of the I × J cells is expressed 

as: 

( )ij i j ij ijy g e ge           (1) 
where   is the grand mean, gi the effect of the i-th hybrid, ej the effect of the j-th site, (ge)ij the 

interaction of the i-th hybrid in the j-th site and 
ij  is the average error. 

In factorial regression (DENIS, 1988; VAN EEUWIJK et al., 2005), explicit environmental 

information is included to describe the interaction term: 

1
( )

K

ij i j jkk ik
E Y Z   


        (2) 

where ( )ijE Y is the expectation of genotype i in environment j,  is the grand mean, 

i represents the genotype main effect, 
j  is environment main effect, 

jkZ  refers to the value 

of any environmental variable k for environment j, and 
ik  represents the sensitivity of genotype 

i to the explicit environmental variable k (VOLTAS et al.,  2005). 

The R program also provided a partition of the total hybrid × site (HS) interaction into 

heterogeneity (non-additivity or the linear effect of environmental index (EI); EI = , 

where  is mean of all hybrids in the site j and  is mean of all hybrids across all sites) and 

residual HS interaction. 

 

RESULTS AND DISCUSSION  

The ANOVA analysis shows that there are highly significant effects (P < 0.01) for all 

observed sources of variation (Table 2) for the tested maize hybrids in 2004 as well as in 2005. 

Site effect in 2004 accounted for as much as 82.9% of the total sum of squares and was 9.31 

times higher than the hybrid effect (Table 2). This could be explained by high variability of 

weather conditions between the sites in 2004, (Supplementary table 1) of which precipitation 

was likely to affect the site effect.  

Less obvious differences among observed effects were shown for testing network in 

2005, when hybrid and hybrid × site (interaction) effects captured 32.3% and 38.2% of the total 

sum of squares (Table 2), respectively, while site accounted for only 29.5% of the total sum of 

squares. Variance due to site effect was as much as 2.81 times smaller in the testing network of 

maize hybrids in 2005 than the same effect observed in 2004. This could be explained by much 
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more favorable conditions in 2005 (Supplementary table 2) that did not magnify the differences 

between the sites as they did in 2004. 

 

Table 2. Two-way fixed effect ANOVA for grain yield of tested experimental hybrids 

. ** Significant at the probability level of P=0.01 

 

Maize hybrids in field trials conducted in 2004 and 2005 showed 4.66 times greater 

hybrid × site interaction in 2005 than in 2004. Although the usual proportion of the genotype × 

site interaction counts around 10% of total sum of treatments in standard MET’s (GAUCH, 2013), 

in some cases it can be much larger. STANISAVLJEVIĆ et al. (2013) reported the proportion of the 

genotype × site interaction in total variation from 6.7% to 36.3% in five consecutive years (2007-

2011). The genotype effect also contributed more to the grain yield variance in 2005 and it was 

3.62 times larger than the genotype effect recorded in 2004.  

In order to test the individual influence of climatic variables, we conducted individual 

factorial regression on all measured climatic variables in the hybrid × site sum of squares. By 

using 20 degrees of freedom (or more than 14.3% total) all variables showed significant (P < 

0.01) contribution to the interaction observed for the maize hybrids in 2004 (Table 3). 

Precipitation in the month of July (Pr7) showed the greatest contribution to the interaction sum 

of squares (29.9%) while the Relative humidity in the month of April (rh4) showed the least 

contribution (6.6%) (Table 3). 

Among climatic variables tested by the individual factorial regression model for their 

influence on maize hybrids in 2005, 24 variables proved to be highly significant (P < 0.01) and 

eight variables were significant (P < 0.05) (Table 3). In 2005, the most important variable for 

expressing differential hybrids response to the locations was EI (43.9%) and the least significant 

was rh10 (14.6%) (Table 3). This was to be expected, since 2005 was the year with no 

exceptional weather extremes (Supplementary table 2), therefore EI variable explains the 

variation most successfully, since it captures not only climatic variables but also reflects specific 

site characteristics such as the soil type and condition. This is in accordance with the results of 

KANG and GORMAN (1989) who found heterogeneity caused by environmental index to be 

significant for the maize MET in a Louisiana contributing with 9.16% to the interaction variance. 

MAGARI and KANG (1993) estimated contribution of environmental index, minimum temperature, 

maximum temperature, preseason rainfall, rainfall during the growing season, and relative 

humidity to GEI by determining heterogeneity attributable to each of these covariates. In five of 

eight trials, heterogeneity due to environmental index was found to be significant. FAN et al. 

(2007), however, who conducted maize MET trials in People’s Republic of China, observed no 

significant heterogeneity caused by environmental index.  

Source of 

variations 

2004  

 

2005  

df SS (%) MS df SS (%) MS 

Hybrid 20 8.9 28.8**  23 32.3 16.8** 

Site 7 82.9 758.7**  6 29.5 58.7** 

Interaction 140 8.2 3.7**  138 38.2 3.3** 

Error 480 – 0.77  483 – 1.79 
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Table 3. Analysis of variance of individual factorial regression model for maize hybrids in 2004 and 2005. 

Source of 

variation 

FAO400 (2004) Source of 

variation 

FAO400 (2005) 

SS (%) P SS (%) P 

 pr7 29.9 0.000    EI 43.9 0.000 

 pr5 28.3 0.000    pr4 36.4 0.000 

 pr9 27.4 0.000    mnt9 35.1 0.000 

 mt9 27.1 0.000    mt9 34.7 0.000 

 mnt5 26.3 0.000    mxt8 34.0 0.000 

 mnt9 25.5 0.000    pr6 31.7 0.000 

 mnt4 24.3 0.000    mt10 31.5 0.000 

 mt5 23.3 0.000    mxt7 30.8 0.000 

 mnt8 23.3 0.000    mt5 29.9 0.000 

 mt4 23.3 0.000    mnt10 28.9 0.000 

 mt8 23.1 0.000    mnt8 28.7 0.000 

 mxt7 22.2 0.000    mnt7 27.1 0.000 

 mxt9 21.9 0.000    mt8 26.6 0.000 

 mnt7 21.5 0.000    mnt4 26.2 0.000 

 mt7 21.0 0.000    mnt5 24.1 0.000 

 mxt10 20.5 0.000    mt7 24.0 0.000 

 EI 20.5 0.000    mt4 23.6 0.000 

 mnt10 20.4 0.000    sh9 22.8 0.000 

 sh8 19.9 0.000    sh7 20.7 0.001 

 mxt4 19.7 0.000    mxt9 19.1 0.002 

 mxt8 19.4 0.000    mt6 19.0 0.002 

 sh5 19.4 0.000    mnt6 18.9 0.002 

 rh10 18.8 0.000    mxt6 18.6 0.003 

 mt10 18.1 0.000    rh5 17.3 0.007 

 mxt5 18.0 0.000    rh6 16.4 0.012 

 mnt6 15.8 0.000    pr10 16.3 0.013 

 mt6 15.8 0.000    rh8 16.1 0.014 

 pr6 14.7 0.000    pr5 16.0 0.015 

 pr4 13.9 0.000    pr7 16.0 0.016 

 sh4 13.9 0.000    sh10 14.7 0.033 

 rh5 13.3 0.000    rh7 14.7 0.033 

 mxt6 13.3 0.000    rh10 14.6 0.035 

 sh6 13.1 0.000    

 sh7 13.0 0.000    

 pr10 11.7 0.000    

 rh6 10.4 0.000    

 sh9 10.0 0.000    

 sh10 9.8 0.000    

 rh8 9.2 0.000    

 pr8 8.0 0.000    
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 rh9 7.3 0.000    

 rh7 6.8 0.001    

 rh4 6.6 0.002    

mxt-maximum temperature; mnt-minimum temperature; mt-average temperature; pr-precipitation; rh-

relative humidity; sh-insolation hours; 4-April; 5-May; 6-June; 7-July; 8-August; 9-September; 10-October. 

 
Table 4. Multiple factorial regression models for grain yield of tested maize hybrids 

mxt-maximum temperature; mnt-minimum temperature; mt-average temperature; pr-precipitation; rh-relative humidity; 

sh-insolation hours; 4-April; 5-May; 6-June; 7-July; 8-August; 9-September; 10-October. All reported values are given as 

percentage of the explained variance of interaction by the term 

 

Model Environmental variables included in the final model Residual 

 2004  

All pr7 (29.9), mnt5 (24.7), mxt5 (13.2), sh4 (9.8) 22.4 

mxt mxt8 (23.4), mxt7 (22.2), mxt6 (11.4), mxt10 (11.1) 31.9 

mnt mnt9 (27.3), mnt5 (26.3), mnt6 (11.6), mnt7 (8.1) 26.8 

mt mt9 (27.1), mt4 (24.3), mt6 (9.0), mt10 (7.4) 32.2 

pr pr7 (29.9), pr4 (14.1), pr10 (12.7), pr6 (11.1) 32.2 

rh rh8 (20.7), rh7 (19.9), rh10 (18.7), rh6 (9.9) 30.8 

sh sh8 (19.9), sh7 (19.4), sh9 (13.0), sh4 (11.3) 36.4 

April mnt4 (24.3), mxt4 (19.9), mt4 (13.7), sh4 (12.9) 29.2 

May pr5 (28.3), mt5 (24.7), mxt5 (13.4), rh5 (8.3) 25.3 

June sh6 (19.9), mnt6 (15.8), mxt6 (15.5), mt6 (13.9) 34.9 

July pr7 (29.9), mnt7 (22.3), mxt7 (11.6), mt7 (10.2) 26.0 

August mnt8 (23.3), mt8 (17.3), sh8 (15.8), rh8 (11.5) 32.1 

September pr9 (27.4), mnt9 (25.7), mt9 (13.5), mxt9 (11.1) 22.3 

October mnt10 (21.1), mxt10 (20.5), rh10 (19.5), mt10 (16.3) 22.6 

 2005  

All EI (43.9), mt9 (16.8) 39.3 

mxt mxt8 (34.0), mxt9 (20.3) 45.7 

mnt mnt9 (35.0) 65.0 

mt mt9 (34.7), mt10 (18.1) 47.2 

pr pr4 (36.4), pr5 (21.1) 42.5 

rh rh10 (18.2), rh5 (17.3) 64.5 

sh sh9 (22.8), sh7 (17.4) 59.8 

April pr4 (36.4) 63.6 

May mt5 (29.8) 70.2 

June pr6 (31.7) 68.3 

July mxt7 (30.7), pr7 (19.0) 50.3 

August mxt8 (34.0) 66.0 

September mnt9 (35.0), sh9 (22.2) 42.8 

October mt10 (31.5), sh10 (18.3) 50.2 
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Multiple factorial regression, coupled with a stepwise procedure for variable selection 

was used to search for the most informative sets of environmental covariables. Multiple factorial 

regression models that showed as most successful in explaining interaction variance in the 2004 

was the one that included pr7, mnt5, mxt5 and sh4 variables (77.6%) (Table 4).  

Rainfall in July had such a significant impact on explaining the variance in 2004 due to 

high daily average temperatures combined with severe drought in 2004 (Supplementary Table 1). 

Water stress is one of the most detrimental stress factors although high temperatures, defoliation 

- from hail, insects, etc. and extremely high plant populations, among others, also reduce yield 

during this critical time, especially when coupled with drought stress. During flowering, plants 

use more water (0.89 to 1.1 cm per day) than at any other time. This is in part because silks have 

the highest water content among all parts of the corn plant. Early medium maize hybrids flower 

in June and July, and stress during the pollination and silking period often reduces yield potential 

(HAYASHI, 2016). Rainfall in July (pr7) is, therefore, logically the variable that explains the 

variation in yield in the moderate to high-drought 2004 season.  

The importance of the variables concerning minimum and maximum daily temperatures 

in  May (mnt5, mxt5) just underlines the importance of the favorable conditions in, and right 

after the sowing. Favorable conditions at the time of planting, and in the period after planting is 

crucial for good rooting and root system development. In basic plant physiology experiments, 

KUCHENBUCH and BARBER, (1988) found that root length density below 30 cm, essential for the 

water and nutrient uptake in the later stages, was correlated with GDD for two weeks following 

planting. 

Analysis of variables belonging to the same type resulted in models with less efficacy 

compared to the model of all variables considered. The biggest portion of explained variance of 

interaction for the maize testing network in 2004 by the type of the variable was in the model 

with minimum temperatures (73.3%) and the smallest in the model with insolation hours (63.6%) 

(Table 4).  

Very successful in explaining the variance of interactions in 2004 were also the models 

using relative humidity and maximum temperature, explaining 69.2% and 68.1% variance of 

interactions, respectively. Among the relative humidity, the most significant was rh8 (20.7%) 

while among the maximum temperature the most significant was mxt8 (23.4%). This is 

consistent with the CHUNG et al. (2014) who have showed that the effects of weather extremes 

such as high temperatures from June to August, when ears are developing, a crucial period for 

maize growth, can be used to predict grain yield losses from a heat wave. 

The most important variables in explaining interaction sum of squares within their type of 

variable for multi-site trial in 2004 were: pr7 (29.9%), mnt9 (27.3%), mt9 (27.1%), mxt8 (23.4), 

rh8 (20.7%) and sh8 (19.9%) (Table 4). Most of them are concentrated in the above mentioned 

critical three months, in the accordance with CHUNG et al. (2014). Variables mnt9 and mt9 were 

more likely related to the Stay Green effect of certain hybrids, allowing them the functional 

photosynthesis in the final stage of vegetative cycle which can be a comparative advantage in 

terms of the final yield. 

Models which considered climatic variables by months for 2004 showed the greatest 

explanation of interaction variance in September (77.7%) and the least in June (65.1%). During 

the vegetative cycle for 2004, minimum temperature was most important in April (24.3%), 

https://www.sciencedirect.com/science/article/pii/S2212094714000668%23!
https://www.sciencedirect.com/science/article/pii/S2212094714000668%23!
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August (23.3%) and October (21.1%); precipitation in May (28.3%), July (29.9%) and 

September (27.4%) and insolation hours in June (19.9%) (Table 4).  

The effect of the temperatures in April (mnt4) on the final yield was not surprising; 

growers tend to sow as early as they can, and the years with favorable conditions in the first 

decade of April provide them with a head-start that can affect their yields at the time of harvest 

by providing the crop with the more time to photosynthesize and avoiding the drought in the 

critical period of flowering (MARESMA et al., 2019). Precipitation in May and July are crucial in 

alleviating the harsh temperature conditions and providing the better conditions in the most 

critical moment in the vegetative cycle - flowering, therefore affecting the pollination, kernel 

number and seed set as the components of the yield. Insolation hours in June, are crucial in using 

the most of the developed photosynthetic surface and photosynthetic apparatus for carbon 

fixation. 

The best model according to multiple factorial regressions for 2005 was the one obtained 

by considering all available variables EI and mt9 (60.7%) (Table 4) which is not surprising – the 

EI represents a majority of differences including soil fertility, cultural practices, humidity, 

insolation and insect or disease occurrences (YAN, 2014). 

Models obtained by the analysis by type of variable, proved to be less efficient in 

comparison to one which treated all available climatic variables. Among them, the most 

successful in explaining the variance was the one which considered precipitation (57.5%) and the 

least successful the one which had taken into account minimum temperatures (35.0%) (Table 4).  

Models obtained by taking into account climatic variables by months of maize hybrids 

vegetative cycle for 2005 show that the maximum temperature is most explanatory in July 

(30.7%) and August (34.0%) minimum temperature in September (35.0%); average temperature 

in May (29.8%) and precipitation in April (36.4%) and June (31.7%) (Table 4). 

By comparing the most influential climatic variables in models by type of variable in 

2004 and 2005, mxt8, mnt9 and mt9 were the most relevant for the genotype × site interaction in 

both years for tested maize hybrids. This is in accordance with MALVAR et al. (2005), who 

studied the performance of crosses among French and Spanish maize populations across eight 

environments and concluded that effects of G, E and GE for grain yield were mainly because of 

earliness, vigor effects and/or environmental factors related to cold stress-the means of minimum 

and maximum temperatures. They had identified maximum temperature as the most important 

environmental variable for GEI for biomass of 161 lines from a F3:4 maize segregating 

populations originally created with the purpose of mapping QTLs loci and investigating 

adaptation differences between highland and lowland tropical maize. 

 

CONCLUSION 

The research conducted in maize field trials identified important sources of genotype × 

environment interaction, and demonstrated the magnitude of their impact on yield variation in 

two very different vegetative seasons: 2004 that proved itself to be harsher in weather extremes, 

and 2005 vegetative season that was more moderate in precipitation and temperature maximums 

in critical phases of corn development. 

The results of this research have both theoretical and practical implications in maize 

breeding as well as in commercial maize production. They provide a base for further research in 
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GEI analysis and analysis of hybrid combination stability and their identification. Furthermore, 

they represents a useful tool in characterizing the sub-regions of maize growing area and 

extending the existing the results to new sites. 
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Izvod 

Interakcija genotip – spoljašnja sredina (GEI), sa svim praktiĉnim i teorijskim aspektima koje 

obuhvata, je fenomen od izuzetne vaţnosti u oblasti genetike i oplemenjivanja. U ovom radu, 

ispitivali smo uticaj interakcije na prinos zrna srednje-ranih hibrida kukuruza iz mreţe ogleda 

koje sprovodi Odsek za priznavanje sorti Ministarstva poljoprivrede, šumarstva i vodoprivrede 

Republike Srbije, na osam lokaliteta u toku dve godine. Ispitivane varijable objasnile su 77.6% u 

prvoj, odnosno 60.7% varijacije u drugoj posmatranoj godini. Faktorijalna regresija sa izborom 

promenljivih je pokazala da je model koji uzima u obzir padavine u mesecu julu (pr7), 

minimalnu (mnt5) i maksimalnu temperaturu u maju (mxt5), i koliĉinu sunĉanih sati u aprilu 

(sh4) u 2004. godini, i indeks spoljašnje sredine (EI) i proseĉnu temperaturu u septembru (mt9) u 

2005, godini, najuspešnije objašnjava prisustvo interakcije na teritoriji Vojvodine u toku dve 

posmatrane godine. Ovi rezultati pruţaju osnovu za dalja istraţivanja vezana za fenomen 

interakcije genotip-spoljašnja sredina i stabilnost prinosa, a takoĊe predstavljaju koristan alat u 

karakterizaciji sub-regiona u oblasti gajenja kukuruza. 
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