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One of the most important phases in commercial maize breeding programs is the 

assessment of the value of newly-developed progeny by testing in hybrid combinations. 

In this study, non-parametric stability measures were applied to analyze the genotype × 

environment interaction and to assess phenotypic stability of two half-sib maize 

populations, each consisting of 40 genotypes, across 9 variable environments. Non-

parametric tests of significance determined the presence of qualitative interaction for 

grain yield in both observed populations. Results of the stability analysis showed no 

significant differences between the two progeny groups indicating that the used testers did 

not bring significant increase in stability in either of the analyzed half-sib populations. 

Individual genotypes were also compared based on grain yield stability within both 

progeny groups using the stability parameters Si
(1)

, Si
(2)

, Si
(3) 

and Si
(6)

. Association between 

the grain yield and stability indices Si
(1) 

and Si
(2) 

of the analyzed genotypes was presented 

graphically enabling the identification of genotypes which can be recommended for 

further breeding process as the most promising ones. The correlations between grain yield 

and stability parameters were tested by Spearman’s rank correlations. Both progeny 

groups (HS1 and HS2) showed no significant correlations between the grain yield and 

stability parameters Si
(1) 

and Si
(2)

, but the rank correlations between Si
(1) 

and Si
(2)

 values 

were very strong and highly significant. Highly significant negative correlations were 
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found between grain yield and stability indices Si
(3) 

and Si
(6) 

in both progeny groups, and 

very strong and highly significant correlations were found between Si
(3) 

and Si
(6)

 values. 

Key words: genotype by environment interaction, grain yield, stability indices 

 

INTRODUCTION 

Pedigree breeding is one of the most widely used methods in commercial maize 

breeding programs. When in use, it is essential to comprehensively know the materials, to choose 

parents with complimentary traits for breeding starts, and to keep precise progeny records which 

show family relationships (HALLAUER and CARENA, 2009). By using the populations of narrow 

genetic base, pedigree breeding method produces elite inbred lines in the shortest time frame. 

The initial material in most commercial breeding programs comprises biparental populations 

from crossing two elite, most often related, inbred lines, while the lines of the opposite heterotic 

groups are used as testers. Besides biparental populations, two-parent backcross one (BC1) 

populations, tri-parental populations and commercial hybrids are the next most common types of 

populations used in inbred line development (MIKEL, 2006).  

One of the most important phases in the breeding process is the assessment of the value 

of newly-developed progeny by testing in hybrid combinations. There are two major decisions to 

be made regarding this issue: at which inbreeding level should the tests be performed so as to 

assess their combining abilities, and which kind of tester should be selected for this purpose. In 

most cases, the assessment is performed in early generations of inbreeding by testing the progeny 

in trials on one or more different sites, while elite inbred lines of the opposite heterotic group are 

used as testers (LEE and TRACY, 2009). During the initial testing phases, the yield of individual 

progenies is the most important criterion for the following steps of the selection process, and 

phenotypic stability of the genotypes is usually disregarded at this stage.  

According to the theory of quantitative genetics, the expression of quantitative traits is 

conditioned by the effect of genotype, environment, and their mutual interaction. The genotype × 

environment interaction is present when phenotypic performance of a genotype varies in 

different environments, i.e. when genotypes react differently depending on the environment 

(MALOSETTI et al., 2013). The presence of interaction complicates the breeding process and 

decreases the interdependence of phenotypic and genotypic values, which slows the progress of 

breeding. One of the ways to eliminate negative consequences of this interaction is to identify 

stable high-yielding genotypes that positively react to the environment they are grown in. 

In general, there are two major approaches for studying the genotype × environment 

interaction. The first one is parametric approach, which implies relating observed genotypic 

responses to a sample of environmental conditions, and the second one is non-parametric 

approach, which is based on the genotype rankings across the environments (SEGHERLOO et al., 

2008). In the analysis of the interaction, the main role of the experimental design and statistical 

models is to eliminate the inexplicable variability as much as possible–the noise present in data 

(ABAY and BJØRNSTAD, 2009). Numerous statistical methods have been developed to examine 

the interaction. They can be based on the analysis of variance, linear regression, non-linear 

analysis, multivariate analysis, biplot analysis, or on the methods of non-parametric statistics 

(BALESTRE et al., 2009). When selecting a model, one should keep in mind that the interaction 

can occur due to numerous factors and that in fact it represents a reflection of prevalent stress 

factors at the time the experiment was conducted (drought, diseases, pests). If there are only one 

or two prevalent factors, then models based on the linear regression are adequate. A more 
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complex structure of the interaction effect refers to multivariate models that are best adapted to 

different data sets (BABIĆ et al., 2011). HUEHN (1996) lists some of the advantages of non-

parametric models, such as decreased bias in the analysis of interaction caused by extreme 

values, normal distribution of frequencies is not necessary, homogeneity of variances is not 

necessary, and addition or deletion of one or more genotypes does not affect the outcome of the 

analysis (orthogonality of the model). Furthermore, they are easy to use and interpret and more 

reliable in cases when some of the necessary assumptions for the application of parametric 

models are violated (TRUBERG and HUEHN, 2000). 

According to non-parametric models for the assessment of stability, a genotype will be 

considered stable if it has a relatively constant ranking in various environments (FLORES et al., 

1998). HUEHN (1979) and NASSAR and HUEHN (1987) proposed four non-parametric measures of 

phenotypic stability: Si
(1)

 is the mean of the absolute rank differences of a genotype over the n 

environments, Si
(2) 

is the variance among the ranks over environments, Si
(3)

 is the sum of the 

absolute deviations for each genotype relative to the mean of ranks, and Si
(6)

 is the sum of 

squares of rank for each genotype relative to the mean of ranks. 

Identification of desirable progenies with high yield potential and stability, especially in 

early generations of inbreeding, is one of the most important steps in commercial maize breeding 

programs. In relation to this, the rank orders of the genotypes across the environments can be the 

most essential information. The objective of this study was: i) to analyze the genotype × 

environment interaction on grain yield of two half-sib maize populations and to examine the 

effect of different testers on grain yield stability, and ii) to identify the individual genotypes that 

have high yields and stable performances across diverse test environments. 

 

MATERIAL AND METHODS 

Genetic material 

The development of two half-sib maize populations started in 2006 with initial crosses 

of two inbred lines 260341NS (75% Stiff Stalk Synthetic, 25% local) and 462NS (Stiff Stalk 

Synthetic). In winter nursery 2006/2007, F1 plants were selfed and about 500 S1 plants were 

grown in Novi Sad, Serbia during the season of 2007. The earliest 150 individual plants were 

selfed and after phenotypic selection 50 desirable plants were harvested. In winter nursery 

2007/2008, selected plants were grown ear to row and selfed to produce S3 generation. In the 

season of 2008, 20 randomly chosen plants from each of the 40 S3 progenies were crossed with 

two genetically distinct testers. Both testers were lines developed at the Institute of Field and 

Vegetable Crops, Novi Sad, Serbia. The first tester, 72NS, belongs to Iodent, while the second 

one, 26NS, belongs to the Lancaster heterotic group. As a result of crossing, two half-sib 

populations were obtained, each consisting of 40 genotypes whereby each of the forty S3 

progenies was crossed with both testers. 

 

Field trials 

The trials were set up as a randomized complete block design with two blocks, on three 

sites in Serbia (Rimski Šanĉevi, Srbobran, and Baĉki Petrovac) in 2009, 2010, and 2011. 

Combinations of years and locations were treated as 9 environments. The planting was done 

mechanically, with the distance of 0.75 m between rows and 0.22 m within rows, providing the 

plant density of 60.606 plants per hectare. The basic plot size was 9.8 m
2 

for each genotype (two 

rows of 6.5 m in length). Conventional cultivation technology was applied, which was adapted to 



1084                                                                                                      GENETIKA, Vol. 50, No3, 1081-1094, 2018 

the ecological conditions of the location.The harvest was done mechanically and grain yield (t 

ha
-1

, adjusted on 14% of moisture content) and grain moisture content (%) were recorded for 

each assessed progeny per basic plot. 

 

Statistical analyses 

Non-parametric testing of the genotype × environment interaction was performed 

according to Bredencamp and de Kroon and Van der Laan (HUEHN, 1996). The method proposed 

by BREDENCAMP (1974) is based on the linear model for the interaction in which it is a deviation 

from the additive main effects, and in this case used for the test of non-crossover interaction. The 

method proposed by DE KROON and VAN DER LAAN (1981) was used to test crossover interaction. 

This method is based on the transformation of the original data into ranks and the analysis of 

their values. 

Yield stability of both progeny groups was analyzed using the non-parametric method 

through the stability indices Si
(1)

, Si
(2)

, Si
(3)

 and Si
(6)

 (NASSAR and HUEHN, 1987). The non-

parametric stability index Si
(1)

 is the mean of genotype rank differences over the studied 

environments and is calculated using this formula: 

 
1 1(1)

1 1
2

( 1)

N N ij ij

i j j j

r r
S

N N

  

  





   

where rij is the rank of genotype i in the environment j. 

Si
(2) 

is the variance of genotype ranks over the studied environments and is calculated 

using this formula: 
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Based on the non-parametric indices, a genotype i is considered stable if its ranking is 

approximately the same across all the environments, and maximum stability is expressed by the 

genotype with values Si
(1)

 and Si
(2)

 = 0, i.e. its ranking is identical across all the environments.  

It is also possible to test the significance for the values Si
(1) 

and Si
(2)

 by using the 

following formula (HUEHN and NASSAR, 1989):  
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where Zi
(m) 

has approximate χ
2 

distribution with degree of freedom 1. In order to enable the 

testing it is necessary to determine the mean value E {Si
(m)

} and variance var{Si
(m)

} whereby Si
(m) 

<E {Si
(m)

} for the stable genotype, and Si
(m) 

>E {Si
(m)

} for the unstable genotype. 

Parameters Si
(3) 

and Si
(6)

 combine yield and stability based on yield ranks of genotypes 

in each environment. These parameters measure stability in units of the mean rank of each 

genotype and they are calculated as follows: 
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 Stability indices Si
(1)

, Si
(2)

, Si
(3)

, and Si
(6) 

were mutually compared by using Spearman’s 

rank correlations. All described analyses were performed within R computing environment (R 

CORE TEAM, 2016). 

 

RESULTS AND DISCUSSION 

Test of significance for genotype × environment interaction  

There are two types of interactions depending on the genotype performance in different 

environments. An interaction can be non-crossover when genotype rank is constant in all the 

environments or crossover when genotype rank differs across the environments. Appropriate 

non-parametric tests of significance for both the non-crossover and crossover type of interaction 

were applied in order to determine the type of interaction. The null hypothesis is the absence of 

non-crossover interaction according to BREDENKAMP (1974), and the absence of crossover 

interaction according to DE KROON and VAN DER LAAN (1981). For two-dimensional data 

consisting of rows (genotypes) and columns (environments), there are two concepts of crossover 

interaction: different genotypes rank within the environments G×(E) and different environments 

rank within the genotypes E×(G) (TRUBERG and HUEHN, 2000). Based on the results given in 

Table 1 for both progeny groups, values of non-crossover interaction were not significant 

according to Bredenkamp method, while significant values (P<0.01) were found for G×(E) type 

of crossover interaction and not significant for E × (G) according to de Kroon and van der Laan 

method. 

 

Table 1. Chi-square test statistics for genotype by environment interaction for grain yield 

Population 
Breedenkamp 

(non-crossover) 

de Kroon and van der Laan 

(crossover) 

G(E) E(G) 

HS1 127.75ns 102.27** 295.88ns 

HS2 126.08ns 105.19** 306.14ns 

**p< 0.01; ns - non significant 

 

Stability analysis 

Yield stability of both progeny groups was analyzed through non-parametric stability 

indices Si
(1)

, Si
(2)

, Si
(3)

, and Si
(6)

. Regarding stability indices Si
(1) 

and Si
(2)

, the most stable 

genotype is the one with the value Si
(1)

=0 and the lowest possible variance of rank Si
(2) 

in the 

studied environments. As for Si
(3) 

and Si
(6)

, their lowest values indicate maximum stability of a 

given genotype.  

Genotypes within both progeny groups showed different values of stability parameters, 

i.e. some were more stable than others. However, there were no significant differences in the 
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stability between the two progeny groups, which was confirmed by Mann-Whitney test (Table 

2). Such results show that the used testers did not bring significant increase in stability in either 

of the analyzed half-sib populations. 

 

 

Table 2. Mann-Whitney test of differences among two half-sib maize populations for nonparametric 

stability measures for grain yield 

Population Si
(1) Si

(2) Si
(3) Si

(6) 

HS1:HS2 0.916ns 0.981ns 0.958ns 0.912ns 

ns - non significant 

 

 

Even though there were no available previous studies on the effect of testers on the 

maize population stability by using non-parametric stability indices, ŢIVANOVIĆ et al. (2012) 

used this method and parameters Si
(1)

, Si
(2)

, Si
(3)

 and Si
(6)

 to analyze the changes in grain yield 

stability between F2 maize populations after five recombination cycles. Mann-Whitney test for 

Si
(1)

 and Si
(2)

 values did not show significant differences in the stability between the cycles. The 

same authors found significant differences between the cycles only for the parameters S i
(3)

 and 

Si
(6) 

and concluded that the differences were most probably due to differences in the yield per se, 

and not due to stability because the values of those parameters are based simultaneously on the 

yield and the stability. 

Individual genotypes were compared based on grain yield stability within both the first 

and the second progeny group. Within the first progeny group, genotypes G1, G18, G39, and 

G40 had the least rank differences, or the highest stability, according to the values of stability 

indices Si
(1)

 and Si
(2)

, while the genotype G4 had the lowest stability (Table 3). Within the second 

progeny group, genotypes G10, G40, G2, and G26 were the most stable, while the least stable 

were genotype G28 according to Si
(1)

 and genotype G31 according to Si
(2)

 (Table 4). 

NASSAR and HUEHN (1987) suggested the significance test for Si
(1)

 and Si
(2)

. Based on 

the ranks of corrected Si
(1)

 and Si
(2)

 data, the Zi
(1)

 and Zi
(2)

 values are calculated and their sum is 

compared with the critical values of χ
2
 test. Within the first progeny group, the sums of Zi

(1)
 and 

Zi
(2) 

values were 39.53 and 44.28 respectively, which is below the critical value χ
2
 = 55.76 (Table 

3). Within the second progeny group, the sums Zi
(1)

 = 38.17 and Zi
(2)

= 40.19 were also below the 

critical value χ
2
 = 55.76, and therefore within both groups there were no significant differences 

in the stability between the progeny (Table 4).  

Based on the other two stability parameters Si
(3)

 and Si
(6)

 within the first progeny group, 

genotypes G1, G22, G28, and G2 were the most stable, and genotype G8 was the least stable 

(Table 3). Within the second progeny group, genotypes G2, G10, G35, and G19 had the lowest 

values of Si
(3)

 and Si
(6) 

which means they were the most stable, while genotype G33 was the least 

stabile across the studied environments (Table 4).The basic shortcoming of Si
(3)

 and Si
(6)

 stability 

parameters is the fact that they are negatively correlated with the yield. In other words, the most 

stable genotypes are the ones with the lowest Si
(3)

 and Si
(6)

 values,but they are simultaneously 

characterized by low grain yields, which makes these parameters less reliable for the 

identification of high-yielding and stable genotypes (SAGHERLOO et al., 2008).  
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Table 3. Mean grain yield (t/ha), estimation and test of nonparametric stability measures of the first progeny group 
(HS1)  

Genotype Yield Si
(1) Zi

(1) Si
(2) Zi

(2) Si
(3) Si

(6) 

G1 10.1 9.0 3.16 59.8 2.61 3.3 0.7 

G2 10.1 14.8 0.38 157.3 0.28 19.7 2.2 

G3 11.6 12.4 0.15 110.8 0.24 43.0 4.5 

G4 11.0 18.4 4.43 260.8 7.86 84.1 5.6 

G5 11.0 16.7 1.95 209.2 2.79 62.3 4.7 

G6 11.7 15.3 0.68 172.4 0.74 81.6 6.8 

G7 11.4 16.9 2.15 195.9 1.90 84.1 6.0 

G8 11.5 16.9 2.15 198.5 2.06 103.8 7.2 

G9 10.0 14.7 0.30 153.7 0.20 36.6 2.6 

G10 10.7 13.8 0.04 135.0 0.00 35.8 3.0 

G11 10.6 18.2 4.05 237.5 5.25 44.2 3.5 

G12 10.4 15.6 0.84 174.8 0.83 38.1 3.0 

G13 10.5 15.3 0.64 162.9 0.43 38.9 3.0 

G14 10.7 14.4 0.19 142.4 0.04 38.0 3.1 

G15 11.9 14.4 0.19 142.8 0.04 62.7 5.8 

G16 10.9 15.4 0.72 172.5 0.75 46.9 3.7 

G17 10.5 15.8 1.06 186.4 1.37 29.1 2.7 

G18 10.8 9.3 2.69 72.4 1.79 21.0 2.3 

G19 11.6 15.9 1.16 197.1 1.97 68.4 6.0 

G20 11.0 15.3 0.68 168.6 0.60 54.6 4.4 

G21 11.3 17.3 2.64 210.9 2.92 87.7 5.5 

G22 10.3 12.5 0.12 109.8 0.27 16.4 1.6 

G23 11.1 14.1 0.09 139.3 0.02 44.8 3.7 

G24 11.9 13.2 0.00 120.6 0.08 58.8 5.2 

G25 11.0 12.6 0.09 114.4 0.17 34.2 3.2 

G26 11.3 14.1 0.09 148.6 0.11 49.0 4.4 

G27 11.4 13.9 0.05 138.4 0.01 55.8 4.6 

G28 10.6 13.9 0.05 133.3 0.00 17.6 2.1 

G29 11.3 14.7 0.33 155.5 0.24 57.5 4.4 

G30 11.4 10.7 1.14 79.5 1.40 26.1 3.3 

G31 11.7 16.5 1.70 201.0 2.22 102.1 7.3 

G32 11.2 12.7 0.06 116.3 0.14 46.7 3.6 

G33 11.3 11.4 0.63 101.5 0.49 45.6 4.4 

G34 11.9 13.7 0.02 134.7 0.00 64.8 5.2 

G35 11.5 14.4 0.19 144.4 0.06 52.5 4.7 

G36 10.7 14.3 0.15 144.6 0.06 27.6 2.8 

G37 11.3 13.0 0.02 121.4 0.07 52.4 4.0 

G38 10.8 15.2 0.57 158.0 0.30 38.6 3.1 

G39 11.9 9.6 2.33 66.1 2.18 28.7 3.8 

G40 11.2 10.2 1.63 72.4 1.79 23.9 2.5 

Sum   39.53  44.28   

 χ2Zi
(1), Zi

(2)=10.4  χ2
sum=55.76 
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Table 4. Mean grain yield (t/ha), estimation and test of nonparametric stability measures of the second progeny group 
(HS2) 

Genotype Yield Si
(1) Zi

(1) Si
(2) Zi

(2) Si
(3) Si

(6) 

G1 9.1 15.9 1.11 176.3 0.89 23.5 2.3 

G2 9.2 10.6 1.24 82.4 1.25 13.5 1.6 

G3 10.3 12.2 0.21 131.3 0.00 38.8 3.3 

G4 10.8 15.0 0.47 156.7 0.27 70.2 5.6 

G5 9.9 11.1 0.83 89.7 0.92 24.4 2.5 

G6 10.1 16.2 1.42 187.0 1.40 58.2 4.3 

G7 9.8 15.9 1.11 181.3 1.12 45.7 3.5 

G8 9.8 16.6 1.76 194.9 1.84 52.8 3.9 

G9 9.6 15.1 0.51 157.4 0.28 37.0 3.2 

G10 9.6 8.7 3.58 55.9 2.89 15.1 1.9 

G11 10.4 14.9 0.41 158.0 0.30 62.8 5.3 

G12 10.0 14.4 0.21 147.2 0.09 55.1 4.4 

G13 10.4 14.2 0.14 140.8 0.03 56.9 4.8 

G14 10.2 16.4 1.59 188.3 1.46 57.6 4.5 

G15 9.9 16.8 2.08 201.4 2.24 63.9 4.2 

G16 10.0 13.7 0.02 135.3 0.00 36.0 3.0 

G17 9.6 15.1 0.51 156.3 0.26 32.1 2.5 

G18 9.5 12.3 0.17 118.5 0.11 34.4 2.1 

G19 9.8 11.4 0.60 95.4 0.69 21.7 1.9 

G20 10.8 13.0 0.02 118.7 0.10 52.1 4.7 

G21 10.7 13.4 0.00 125.1 0.03 57.8 5.6 

G22 9.9 15.3 0.64 170.3 0.66 50.9 4.1 

G23 10.9 11.7 0.43 99.0 0.57 29.6 4.1 

G24 10.9 14.9 0.41 172.3 0.74 61.5 5.9 

G25 10.5 16.3 1.47 186.4 1.36 85.1 5.8 

G26 10.4 11.0 0.91 88.5 0.97 33.5 3.1 

G27 10.4 13.2 0.00 137.0 0.01 69.6 4.7 

G28 9.8 18.2 3.96 235.3 5.03 68.5 4.6 

G29 10.0 11.3 0.71 89.3 0.94 23.1 2.5 

G30 10.8 15.6 0.84 176.3 0.89 45.5 4.8 

G31 9.9 17.9 3.52 236.9 5.20 75.8 5.1 

G32 10.1 14.6 0.28 153.8 0.20 48.7 3.7 

G33 10.7 17.3 2.64 213.2 3.09 99.1 7.3 

G34 9.9 12.3 0.17 115.9 0.14 35.5 2.8 

G35 9.3 13.1 0.01 118.0 0.11 15.8 1.7 

G36 9.9 15.7 0.97 170.7 0.68 42.6 3.6 

G37 10.3 14.6 0.28 159.9 0.34 67.5 4.9 

G38 10.5 15.6 0.88 169.6 0.64 73.5 5.1 

G39 10.6 11.8 0.38 96.4 0.66 36.1 3.9 

G40 11.0 10.2 1.68 72.3 1.80 28.0 3.9 

Sum   38.17  40.19   

 χ2Zi
(1),  Zi

(2)=10.4 χ2
sum=55.76 
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In commercial maize breeding programs, selection of progeny that will participate in 

further breeding process is mostly performed on the basis of general combining ability for grain 

yield. By simultaneous inclusion of stability analysis it is possible to assess the value of 

individual progenies more precisely and make the selection criterion more objective. One of the 

ways to enable visual identification of the most desirable genotypes regarding both yields and 

stability is to graphically display the associations between grain yields and stability indices Si
(1) 

and Si
(2)

 of the analyzed genotypes. Figure 1(a, b, c, d) shows mean values of grain yield and 

stability indices Si
(1)

 and Si
(2)

 which separate the figures into four sectors. The lower right sector 

of each figure shows the genotypes with yields above the mean, but with low Si
(1)

 and Si
(2)

 

values, which makes them stable. The upper right sector shows the genotypes with yields above 

the mean, but with high Si
(1)

 and Si
(2)

 values, characterizing them as unstable. The lower left and 

upper left sectors show the genotypes with yields below the mean for the given progeny group. 

 

 

 
 

Figure 1. (a,b) Association between grain yield and Si
(1) value of two maize progeny groups (HS1 and 

HS2); (c,d) Association between grain yield and Si
(2) value of two maize progeny groups (HS1 

and HS2) 
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Although the test of significance showed that there were no statistically significant 

differences between stability of various progenies, the following is observable in the Figure 1: 

within the first progeny group, lower right sector of the figure 1a includes the genotypes G39, 

G34, G24, G3, G30, G40, G33, G32, G37 and G27. The second progeny group shows the 

genotypes G40, G23, G20, G21, G27, G39, G26, and G3 in the lower right sector of Figure 1b. 

These genotypes stand out as the most stable and with yields above the mean within their 

progeny groups. Similar distribution of genotypes is shown in Figure 1 c, d which shows the 

associations between grain yields and Si
(2)

 values. Selected genotypes are the ones that will take 

part in further breeding process consisting of visual phenotypic selection in each generation of 

inbreeding until S5 or S6 generation, after which the progenies are evaluated again in testcross 

combinations including more testers and environments (LEE and KANNENBERG, 2004). 

Furthermore, a thorough analysis of the selected genotypes showed that the same progenies 

within two progeny groups most often displayed a high level of stability with different testers. 

Genotypes 3, 27, 39 and 40 simultaneously showed high stability and yields (above average) in 

the crossings to both testers, and therefore these progenies are very promising and should be 

recommended for accelerated testing, including several testers and locations. Despite the fact 

that the applied methods give a useful insight on the genotype stability, the stability parameters 

should not be regarded as the only elements for a definitive conclusion. This especially refers to 

the genotypes with higher yield and lower stability, like genotypes 15, 6 and 31 from the first 

group and genotypes 24, 4 and 30 from the second group. These genotypes could also be 

included in further trials and evaluations, however the focus should remain on their specific 

adaptations on certain growing regions. 

 

Correlations between yield and non-parametric stability measures  

The correlations between grain yield and stability parameters were tested by 

Spearman’s rank correlations. Both progeny groups (HS1 and HS2) showed no significant 

correlations between the grain yield and stability parameters Si
(1)

 and Si
(2)

, but the rank 

correlations between Si
(1)

 and Si
(2)

 values were very strong and highly significant (0.984 in HS1 

and 0.992 in HS2) (Table 5). Highly significant negative correlations were found between grain 

yield and stability indices Si
(3)

 and Si
(6)

 in both progeny groups, and very strong and highly 

significant correlations were found between Si
(3)

 and Si
(6)

 values (Table 5).  

 

Table 5. Spearman’s coefficients of rank correlation for the mean grain yield and nonparametric stability 

measures for the first (below diagonal) and second (above diagonal) progeny groups (HS1 and 

HS2) 

 Yield Si
(1) Si

(2) Si
(3) Si

(6) 

Yield - -0.067 -0.065 -0.653** -0.821** 

Si
(1) -0.0829 - 0.992** 0.601** 0.443** 

Si
(2) -0.0246 0.9841** - 0.606** 0.447** 

Si
(3) -0.4281** 0.6962** 0.7298** - 0.943** 

Si
(6) -0.7126** 0.5128** 0.5620** 0.8985** - 

**p<0.01 
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High values of rank correlation coefficients between Si
(1)

 and Si
(2)

 values were also 

found by DELIĆ et al. (2009), FLORES et al. (1998), SCAPIM et al. (2000) and BALALIĆ et al, 

(2011). The presence of high rank correlations between stability indices Si
(1)

 and Si
(2) 

justifies the 

selection of one of them for the proper stability assessment. HUEHN (1990) favored Si
(1)

 

parameter because it is simple to calculate and interpret the results. Due to their strong negative 

correlations with grain yields, the stability indices Si
(3)

 and Si
(6)

 are not recommended in plant 

breeding. Negative correlations between these indices and yields were also found by 

MOHAMMADI et al. (2007), SAGHERLOO et al. (2008), and DEGHGANI et al. (2016). 

Numerous statistical models have been proposed so far, and they can successfully be 

used in the assessment of genotype adaptability and stability. However, difficulties often arise 

when selecting the most appropriate one. When choosing the adequate model, the following 

should be taken into consideration: the number of genotypes and environments in the analysis, 

differences among the environments, mathematical models which correspond to the given data 

set, defined concept of stability, and possibility of simple application and interpretation of results 

(FARSHADFAR et al., 2012). According to SCAPIM et al. (2000), non-parametric stability indices 

are a useful alternative to the parametric methods. Their application does not necessitate normal 

distribution and homogeneity of variances, or orthogonality of the data. According to most 

studies, the basic shortcoming of stability indices Si
(1)

 and Si
(2)

 is their association with the static 

(biological) concept of stability (FARSHADFAR et al., 2012; NASSAR and HUEHN, 1987; SCAPIM et 

al., 2000; MOHAMMADI et al., 2009). This concept of stability is generally inacceptable to most 

plant breeders and agronomists, who give priority to high-yielding genotypes with positive 

reaction to improved growing technology and favorable environments (BECKER, 1981). A small 

sample (low number of genotypes) may decrease the reliability of these indices, which should be 

avoided whenever possible. 

 

CONCLUSIONS 

Within this research, stability analysis of two half-sib maize populations was assessed 

based on the results of early progeny testing, which is the most widely used method for inbred 

line development in commercial maize breeding programs. The results of group stability analysis 

of two half-sib populations did not show significant differences among them, which leads to the 

conclusion that the used testers did not affect the increase of stability in either of the analyzed 

half-sib populations. However, certain progenies showed less yield variation across 

environments, which characterizes them as more stable than others. The genotypes within the 

first progeny group are G39, G34, G24, G3, G30, G40, G33, G32, G37 and G27, while the 

genotypes with desirable traits from the second group are G40, G23, G20, G21, G27, G39, G26, 

and G3. In addition, genotypes 3, 27, 39 and 40 showed high stability and yields in the crossings 

to both testers which makes them very promising for further applications. Considering this, by 

using the yield and yield stability simultaneously as a selection criterion, it can be expected that 

the selected progenies will provide the basis for development of hybrids with high genetic yield 

potential and desirable phenotypic stability. 
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Izvod 

U ovom radu, primenom neparametijskih pokazatelja stabilnosti, analizirana je interakcija 

genotip-spoljašnja sredina i fenotipska stabilnost dve polusrodniĉke populacije kukuruza na 9 

razliĉitih lokaliteta. Neparametrijskim testovima ustanovljeno je prisustvo unakrsne interakcije 

za prinos zrna u obe posmatrane populacije. Rezultatima analize stabilnosti ustanovljeno je da ne 

postoje statistiĉki znaĉajne razlike izmeĊu dve grupe potomstava, što ukazuje da korišćeni testeri 

nisu uticali na povećanje stabilnosti ni kod jedne od analiziranih populacija. Parametrima 

stabilnosti Si
(1)

, Si
(2)

, Si
(3) 

i Si
(6)

 poreĊene su razlike u stabilnosti prinosa zrna izmeĊu pojedinaĉnih 

genotipova u obe posmatrane populacije. TakoĊe, predstavljen je i grafiĉki prikaz odnosa izmeĊu 

prinosa zrna i stabilnosti koji omogućava identifikaciju najperspektivnijih genotipova za dalji 

proces selekcije. MeĊuzavisnost prinosa zrna i parametara stabilnosti Si
(1)

 i Si
(2) 

testirana je 

primenom Spearman-ovih korelacija ranga. U obe grupe potomstava nisu ustanovljene 

korelacione veze izmeĊu prinosa zrna i parametara stabilnosti Si
(1)

 i Si
(2)

, dok su korelacije ranga 

izmeĊu parametara Si
(1) 

i Si
(2)

 bile veoma jake i visoko znaĉajne. Visoko znaĉajne negativne 

korelacione veze ustanovljene su izmeĊu prinosa zrna i parametara stabilnosti Si
(3)

 i Si
(6)

, dok su 

veoma jake i visoko znaĉajne korelacione veze ustanovljene izmeĊu parametara Si
(3)

 i Si
(6)

.   
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