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Geneticists have been trying to explain adaptability and stability of a 

genotype in terms of a desirable combination of alleles expressed via epistasis. 

Stability determined in one set of data is very often stability of a genotype to a 

prevalent stress factor in a moment of carrying out the experiment. However, 

grain stability of a certain genotype can be a result of different factors, such as 

tolerance to drought, or to some important diseases and pests. Yield and yield 

stability of 15 maize hybrids were observed in 24 environments. The level of the 

interaction effect of studied maize hybrids was identified by the AMMI analysis, 

while a number of bands positively related to yield and stability of studied maize 

hybrids were identified by a genetic characterisation by RAPD markers. Bands 

positively related to yields were present to a greater extent in parents originating 

from the BSSS population, while bands positively related to stability were more 

present in parents originating from the Lancaster population.  
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INTRODUCTION 

Yields stability was recognised as an important objective of plant breeding. It is partially 

influenced by a genetic structure, and partially by heterogeneity and heterozygosity of a variety. 

The majority of scientists define variety stability as genetic ability of a variety to accomplish 

stable and high yield under various environmental conditions. Stability, in terms of agronomy, is 

ability of genotypes to always result in the uniform yield regardless of effects of environmental 

conditions. Geneticists have been trying to explain adaptability in terms of a desirable 

combination of alleles expressed via epistasis, while physiologists emphasised the response of a 
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genotype to stress and genes that were activated by this response (DIMITRIJEVIĆ and PETROVIĆ, 

2000). CATTIVELLI et al. (2002) concluded that little was known about mechanisms that control 

stress as each response to stress is influenced by a great number of genes. Although great 

attention has been paid to this issue, it is still little known about genetic components that 

determine stability and about effects of the selection process on stability (LEE et al., 2003). Early 

concepts of stability based on linear regression (LR) much affected former breeding 

programmes. The interaction could be qualitatively analysed by these concepts only if certain 

data were well fit to the regression model (ZOBEL et al., 1988). In recent times, many researches 

leaved the concept that tried to summarise a great number of vectors included into the interaction 

into one universal parameter of stability. So called hybrid models such as Additive Main effects 

and Multiplicative Interactions (АММI) model, then Sites Regression Analysis (SREG), 

Genotype main effects and Genotype x Environment interaction model (GGE) (GUNJAČA, 2001; 

STOJAKOVIĆ et al., 2012) have been applied. By comparing АММI analysis, GGE analysis and 

PCA analysis, GAUCH (2006) stated in his study that these related models basically had similar 

results. The best results could be achieved when agronomic understanding of yield trials 

(genotypes and environments) was combined with knowledge of statistical and experimental 

design.  

Following the literature impression, LAMKEY and LEE, (1993) stated, that the issue of the 

GxE interaction was accessed more from the statistical than form the biological aspect. They 

considered that such an approach do not play a great role in the plant breeding improvement. The 

genetic analysis of complex traits such as yield and yield stability are a great challenge. A 

polygenic character of complex traits in the combination with the inter locus interaction makes 

this task hard and complicated. Furthermore, besides some general objects related to biology and 

the structure that are known, there are series of unknown magnitudes such as: the number of loci 

that control the trait; the number of segregating alleles per locus; allele frequency; effects of 

allelic substitution; linkage of loci; epistatic interactions between loci; gene expression and 

regulation. Therefore, quantitative traits are still a great challenge and difficult task in studies. 

Application of quantitative trait loci (QTL) methodology opens a discussion on a genetic basis of 

stability. VIA et al., 1995, described two types of genetic control. The “allelic sensitivity model” 

suggests that the constitutive gene itself regulates a direct response to environmental conditions, 

while the “gene regulation model” suggests that there are one or more regulatory genes under the 

direct influence of the environment and that the constitutive gene is activated or deactivated by 

these regulatory genes. 

The main objective of the present study was to reveal the link between certain bands from 

genetic characterisation performed by the RAPD markers of observed maize hybrids and its 

parent components and quantitative traits, grain yield and yield stability. Yield stability was 

defined by the value of the interaction vector obtained in the АММI analysis.  

 

MATERIALS AND METHODS 

The study encompassed 15 commercial maize hybrids ranging from medium late maturity 

(FAO 400) to late maturity (FAO 700) (Table 1). The origin of parental lines and the affiliation 

with heterotic groups are presented in Tables 2. 

Two-year four-replicate trials were set up according to the randomised block design in six 

locations and two sowing densities (D1=54,000 plants ha
-1

 and D2=64,900 plants ha
-1

) (24 

environments). The grain yield (kg ha
-1

) was observed. According to data obtained on the yield, 
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the AMMI analysis was done and by this analysis the level of the interaction effect of observed 

maize hybrids was identified.  

 
 

Table 1. Formulae and average yields of observed maize hybrids 

Hybrid Hybrid formula                   Average yield (t ha-1) 

ZP-677 (ZPL13 x ZPL14) x ZPL3 10.170 

ZP-580 ZPL9 x ZPL10 10.002 

ZP-735 ZPL11 x ZPL17 9.994 

ZP-704 (ZPL13 x ZPL14) x ZPL2 9.879 

ZP-753 ZPL15 x ZPL13 9.827 

ZP-732 (ZPL13 x ZPL14) x ZPL16 9.692 

ZP-701 ZPL13 x ZPL5 9.559 

ST-500 NKL2 x LN2 9.423 

ZP-633 ZPL11 x ZPL12 9.357 

ZP-570 (ZPL4 x ZPL7) x ZPL8 9.314 

ST-600 NKL1 x LN1 9.256 

ZP-599 ZPL6 x ZPL2 9.250 

ZP-480 ZPKL1 x ZPL4 8.802 

ZP-533 (ZPL3 x ZPL5) x ZPL4 8.712 

ZP-42а ZPL1 x ZPL2 8.663 

                                                                                 Overall mean 9.460 

 

 

Genetic characterisation of F1 hybrids and their parental components was done by the 

application of the RAPD markers. The DNA was isolated from grain following the modified 

protocol of SAGHAI – MAROOF et al., (1984). Depending on the DNA concentration after dilution 

of samples, random amplified polymorphic DNA polymerase chain reaction (PCR) was applied. The 

reaction was done following the protocol of WILLIAMS et al., (1990). Twenty-eight commercial 

arbitrary RAPD primers were used. The presence (1) and the absence (0) of bands were visually 

determined for observed maize genotypes. 

According to information on yield, the observed maize hybrids were classified into two 

groups: with the yield above ("+ yield hybrids") and with the yield below overall mean ("- yield 

hybrids"). Based on the length of the interaction vector in the AMMI analysis hybrids were 

classified into three groups: within one ("stable hybrids"), two and three ("unstable hybrids") 

standard deviation. The percentage presence of all obtained bands from the RAPD analysis was 

calculated in all hybrids, and then bands that were present by more than 50% in "+yield" and 

"+stable" hybrids were separated. The presence of separated bands was also presented in parental 

components. 

 

 
Table 2: Origin of parental components of observed maize hybrids 
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Inbred Origin Heterotic group 

ZPL1 Version of the inbred B14  *BSSS 

ZPL2 Мо17  Lancaster 

ZPKL1 Sister combination derived by a cross of inbred line 

Lancaster and the inbred derived by pedigree selection 

from the cross of the Lancaster inbred and an inbred 

originating from Pećki dent 

Lancaster 

NKL2 Sister combination derived by a cross of inbreds 

(B84xCM109)xB84. CM109 is one of the В14 versions. 

BSSS 

LN2 Version of the inbred Мо17 Lancaster 

ZPL3 Developed by pedigree selection from the cross of the 

inbred Мо17 and the inbred originating from Pećki dent 

It combines with BSSS inbreds 

but it gives heterosis and it 

combines with Lancaster 

ZPL4 Developed by pedigree selection from the cross of the two 

inbreds originating from Iowa 

Independent source 

ZPL5 Virginia inbred Lancaster 

ZPL6 Developed by the cross of the inbred А632 (BSSS ) to  

the inbred  А619 originating from Ohio 

Results in hybrids with 

Lancaster inbreds 

ZPL7 Developed by pedigree selection from the cross of the two 

BSSS inbreds 

BSSS 

ZPL8 Version of the inbred L75 Lancaster 

ZPL9 Originates from Istrian large-seeded population It combines with Lancaster 

inbreds but results in hybrids 

also with inbreds from the 

independent source 

ZPL10 Derived by hybrid self-pollination Independent source 

ZPL11 Public inbred FR21-28 derived from self-pollination of a 

Pioneer hybrid  

It combines best with Lancaster 

but results in good hybrids also 

with BSSS inbreds 

ZPL12 Developed by pedigree selection from the Argentinean 

population 

It combines with BSSS inbreds 

but also expresses heterosis with 

Lancaster 

ZPL13 В73 BSSS 

ZPL14 Version of the inbred В84 BSSS 

ZPL15 Developed by pedigree selection from the cross (hybrid 

Arizona х С103) х Мо17 

Lancaster 

ZPL16 Version of С103 Lancaster 

ZPL17 Developed by backcrosses of a  local inbred and an early 

version of Мо 17 

Lancaster 

NKL1 Developed by the cross of В73 to В84 BSSS  

LN1 Version of the inbred Мо17 Lancaster 
*(BSSS-Iowa Stiff Stalk Synthetic) 

 

RESULTS AND DISCUSSION 

The AMMI model is a hybrid model that in the first step applies the analysis of variance, 

by which total variability is divided into main additive effects of genotypes and environments 

and non-additive interaction. Then the principal component analysis (PCA) is applied to the non-

additive remain, GxE interaction. In such a way, several interaction PCA axes (IPCA) or 

components are also obtained. The essential question in all models that include the Singular 
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Value Decomposition (SVD) method is how many axes will be included into the model. Since 

the greatest amount of noise is placed in the interaction, the cumulative curves of the sum of 

squares of pattern and noise can facilitate in making the decision which number of axes is the 

best to be kept in the analysis in a concrete case. Figure 1 shows that the participation of pattern 

sharply increase when the first two interaction axes are included into the model. On the other 

hand, the participation of the noise gradually increased when the third interaction axis is included 

into the model and later it sharply increase (Figure 1). This led to a conclusion that for the given 

set of data the best result would be achieved when the first two IPCA axes are considered (the 

more detailed presentation of the results on the AMMI analysis can be seen in the manuscript 

BABIĆ et al., 2010). 

 

 

Figure 1. Pattern and noise recovered by different AMMI models for grain yield of observed maize hybrids 

 

 

The AMMI2 biplot shows hybrids and environments according to values of the interaction 

effect (IРСА1-IРСА2). Concentric circles represent regions of one, two, or over two standard 

deviations of interaction vector length of observed maize hybrids. The lowest interactions were 

recorded in the hybrids ZP-599 (Н5), ZP-704 (Н15), ST-500 (Н2) and ST-600 (Н10), which 

were placed within a region of one standard deviation of interaction vectors. The following 

hybrids were placed within the region of two standard deviations: ZP-42а, ZP-480, ZP-580, ZP-

677, ZP-701 and ZP-753. The highest values of interaction vectors (outside of two standard 
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deviations) were detected in the hybrids: ZP-533, ZP-570, ZP-633, ZP-735 and ZP-732, which 

points out the lowest stability of this group (Figure 2).  

 

 

Figure 2. AMMI2 biplot for grain yield of the observed maize hybrids 

 

The application of molecular markers in the improvement of complex quantitative traits, 

such as yield or stability, is very limited in the breeding programmes in which phenomenon of 

heterosis is used. The problem of the GxE interaction in commercial breeding programmes is 

solved by studying commercial hybrids in a great number of locations and years. Due to an 

unknown mechanism of genetic control and an unknown mechanism of gene regulation by 

environmental factors, the GxE interaction is not a simple problem within a field of molecular 

marker studies. On the other hand, we assumed that molecular markers could provide a different 

insight into the GxE interaction, the insight which was not possible by applied statistical 

analyses. Therefore, genetic characterisation by RAPD markers was done for both, hybrids and 

their parental components, with the aim to determine the link between results on the level and 

stability of yields obtained in field trials and results of genetic characterisation. The analysis was 

performed with 28 RAPD primers out of which primes ОРВ05, ОРВ09 and ОРВ02 did not 

provide bands; primers GEN4-70-7 and GEN1-70-9 did not provide data for a greater number of 

genotypes, while the primer ОРВ19 had one band for all observed genotypes. Therefore, all 

these primers were rejected. Twenty one primers were used for the further analysis. The total 

number of bands with 21 selected markers amounted to 141 that is 6.7 bands per primer. 

According to field trials and presented statistical analyses it was tried in a simple way to 

find out the connection between the level and stability of yield and results obtained by the 

application of molecular markers. Observed maize hybrids were grouped according to obtained 
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yield into high yielding "+ yield" (whose yield was above the overall mean) and low yielding "- 

yield" hybrids (whose yield was below the overall mean), and according to stability into "stable" 

(whose interaction was within one standard deviations of the interaction vectors) and "unstable" 

(whose interaction was outside values of two standard deviations of the interaction vectors). 

Then, the percentage of presence of each of 141 bands obtained by RAPD markers was 

estimated. Six bands (2, 9, 35, 128, 135 and 136) were separated as they were present by more 

than 50% in hybrids achieving yield above the average. Also, eight bands (1, 9, 16, 36, 51, 54, 

113 and 128) were separated as they were present by more than 50% in hybrids that expressed 

small values of the interaction (Table 3). It was also noticeable that except bands 9 and 128 all 

others were different. This can lead to a conclusion that the yield and stability are the frequently 

defined by a different set of genes, i.e. by DNA fragments of different lengths and locations on a 

genome. This is in agreement with studies carried out by some authors who stated that the yield 

and stability were the most probably defined by different genes and, despite negative correlation, 

stable genotypes with high yielding potential can be developed. Moreover, loci in the interaction 

with the environment, so called stability loci, were identified in some recent studies dealing with 

QTL mapping of complex quantitative traits. Some of such loci were in the vicinity of the locus 

regulating the main trait, while others were positioned in sites with no QTLs regulating the main 

trait (UNGERER et al., 2003; SARANGA et al., 2001; HITTALMANI et al., 2003). 

 

Table 3. Presence of "+ yield" (deep grey cells) and "+ stability" (light grey cells) bands in hybrids (%) 

 (primer)-ordinal number 

of the band 

yield 

difference 

stability 

difference 
% in "+ 

yield" 

hybrids 

% in "- 

yield"  

hybrids  

% in  

stable  

hybrids 

% in  

unstable  

 hybrids 

(GEN 2-8-70)-1 43 38 5 75 0 75 

(GEN 2-8-70)-2 71 13 59 50 33 17 

(GEN 1-80-4)-9 100 50 50 100 50 50 

(GEN 1-80-5)-16 86 63 23 100 33 67 

(GEN 1-70-10)-35 71 13 59 50 17 33 

(GEN 1-70-10)-36 0 63 -63 75 0 75 

(GEN 4-70-3)-51 29 88 -59 100 50 50 

(GEN 2-80-10)-54 71 63 9 100 33 67 

(OPB 15)-113 57 88 -30 100 50 50 

(OPB 4)-128 71 13 59 75 17 58 

(OPB 14)-135 100 13 88 25 50 -25 

(OPB 14)-136 86 13 73 25 50 -25 

 

The presence of so called "+ yield" bands (deep grey) and "+stability" bands (light grey) is 

also presented for parental components (Table 4). It is noticeable that the "+ yield" bands were 

more present in inbreds of the ВЅЅЅ heterotic groups, while "+stability" bands were more often 

present in the inbreds of the Lancaster background. The most stable hybrids have most often a 

high presence of "+stability" bands in both parents. A great success of hybrids developed by the 

crosses of these two heterotic groups might be explained by this result. If we consider the known 

heterotic pair В73 and Мо17 (ZPL2 and ZPL13) we shall notice that Мо17 has all separated 
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"+stability" bands and one "+ yield" band, while В73 has all "+ yield" bands and few "+stability" 

band. According to practice the combination of these two inbred lines results in the stable high 

yielding hybrid whose modifications are still cultivated in large regions under the moderate 

climate conditions. 

 

Table 4. Presence of "+ yield" (deep grey cells) and "+ stability" (light grey cells) bands in parental 

components 

marker/ 

genotype 

 

1 

 

2 

 

9 

 

16 35 

 

36 

 

51 

 

54 

 

113 128 

 

135 

 

136 

NKL2  1 0 1 0 0 0 0 0 0 0 1 1 

LN2  1 0 0 0 0 1 1 1 1 0 1 0 

ZPL6  1 0 / 0 / / 0 1 1 0 0 1 

ZPL2  1 0 0 1 0 1 1 1 1 0 1 0 

ZPL13xZPL14 1 1 1 1 1 0 0 1 0 1 1 1 

ZPL13  1 1 1 1 1 0 1 1 0 1 1 1 

ZPL14  1 0 1 1 0 1 0 1 0 1 0 1 

NKL1  1 1 1 0 1 0 0 1 0 1 1 1 

LN1  1 0 0 1 0 1 1 1 1 1 0 0 

ZPL4xZPL7 1 0 1 0 0 0 1 1 0 0 1 1 

ZPL4  1 0 0 1 0 0 1 1 0 0 1 1 

ZPL7  1 0 1 0 0 0 1 1 0 0 0 1 

ZPL8  1 0 0 0 0 1 1 1 1 0 0 0 

ZPL3xZPL5  1 0 0 0 0 1 1 1 1 0 0 0 

ZPL3  1 0 0 0 0 1 1 1 1 0 0 0 

ZPL5 1 0 0 0 0 1 0 1 1 0 / / 

ZPL11  1 0 0 0 0 1 1 1 0 0 0 0 

ZPL12 1 0 0 0 0 1 1 1 1 0 0 0 

ZPL16  0 0 0 1 / / 1 1 1 0 0 0 

ZPL17  1 0 0 0 0 0 0 1 0 0 1 1 

ZPL1  1 0 1 0 0 1 0 1 0 0 1 1 

KL1  1 0 0 1 0 1 1 1 1 0 0 0 

ZPL15  0 0 0 1 0 1 1 1 1 0 0 0 

ZPL9  1 0 0 0 0 0 0 1 1 1 1 0 

ZPL10  1 0 1 1 1 0 1 1 0 1 0 1 

 

 

Two "+ yield" bands were present in the male component (ZPL4) of the hybrid ZP-533, 

while there were no "+ yield" bands present in the female component (ZPL3хZPL5) that had 

only "+stability" bands. This hybrid ranked last based on the yield, and its stability vector was in 

the region outside two standard deviations. The female component of the hybrid ZP-704 

(ZPL13xZPL14) had all bands for the yield, as well as, five bands for stability, while the male 

component had six bands for stability and one for the yield. This hybrid had the lowest value of 

the interaction vector, while its yield was above the overall mean (it ranked fourth). For the 
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observed maize hybrids can be stated that parents of the ВЅЅЅ background contributed more to 

the yield, while the parents belonging to the Lancaster heterotic group contributed more to 

stability. However, such presence of bands can be simply a consequence of a great divergence of 

parental components. Due to this, as wall as, due to a small number of observed genotypes, 

general conclusions can not be drawn, but obtained results are to a great extent in accordance 

with results on field trials, as well as, with empirical data in practice (BABIĆ et al., 2011b).  

When genetic potential of the yield is studied and genotypes are compared by the yield it 

is very rare to simultaneously observe parameters that can be a cause of stability and any biotic 

or abiotic stress. Therefore, when we consider yield stability of a certain genotype, we have to 

bear in mind that stability can be a consequence of  various factors, such as tolerance to drought 

or resistance to the most important diseases or pests (BABIĆ et al., 2011a). Hence, genotype 

stability, determined in one set of experiments, cannot be generalised. It primarily presents 

certain stability of a genotype to a prevalent stress factor in the moment of carrying out the 

experiment.  

The comprehension of the GхE interaction of quantitative traits from the genetic aspect 

requires knowledge on its genetic structure. Therefore, the GхE interaction will not be a simple 

problem from a molecular markers aspect, except in cases when the regulation of the gene 

activity by environments is simple. However, regardless of all difficulties that accompany the 

application of molecular markers in breeding for complex quantitative traits, such as yield and 

stability, their application in breeding programmes can provide a different insight into the nature 

of these traits, the insight that statistical analyses by themselves do not provide. 
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Izvod 

Gentičari pokušavaju da objasne adaptabilnost i stabilnost genotipa u smislu poželjne 

kombinacije alela ispoljenih kroz epistazu. Međutim, stabinost definisana u jednom setu 

podataka je vrlo često zapravo stabilnost genotipa na dominantni stresni faktor u momentu 

izvođenja ogleda. Stoga, stabilnost rodnosti određenog genotipa može biti rezultat različitih 

faktora kao što su tolerantnost na sušu ili neku značajnu bolest ili štetočinu. U ovom radu 

ispitivan je nivo i stabilnost prinosa 15 hibrida kukuruza u 24 poljne sredine. Nivo interakcijskog 

efekta definisan je AMMI analizom. Genetička karakterizacija je urađena RAPD markerima. 

Trake pozitivno vezane za visok nivo prinosa su najčešće bile prisutne u roditeljima koji vode 

poreklo iz BSSS populacije dok su trake pozitivno vezane za stabilnost bile u značajnom 

procentu prisutne kod roditelja Lancaster populacije.  
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