HelEx - Use of extremophile Helianthus species to mitigate climate change impact on feedstock and ecosystem services provided by sunflower

Link to this page

info:eu-repo/grantAgreement/EC/HE/101081974/EU//

HelEx - Use of extremophile Helianthus species to mitigate climate change impact on feedstock and ecosystem services provided by sunflower (en)
Authors

Publications

Advances in sunflower breeding to increase oil content and drought resistance

Miklič, Vladimir; Jocković, Milan; Jocić, Siniša; Cvejić, Sandra; Ćuk, Nemanja; Jocković, Jelena; Radanović, Aleksandra; Marjanović-Jeromela, Ana; Miladinović, Dragana; Grahovac, Nada

(International Sunflower Association (ISA), 2024)

TY  - CONF
AU  - Miklič, Vladimir
AU  - Jocković, Milan
AU  - Jocić, Siniša
AU  - Cvejić, Sandra
AU  - Ćuk, Nemanja
AU  - Jocković, Jelena
AU  - Radanović, Aleksandra
AU  - Marjanović-Jeromela, Ana
AU  - Miladinović, Dragana
AU  - Grahovac, Nada
PY  - 2024
UR  - http://fiver.ifvcns.rs/handle/123456789/4852
AB  - Sunflower is a globally important oilseed crop mainly used for oil in human consumption, while secondary products have nutritional value in livestock feed. Neverthless there have been advancements in breeding sunflower genotypes with desirable traits, high yield, and disease resistance, further research is needed to address emerging challenges, such as climate resilience and sustainability. Bearing in mind that sunflower breeding over the last several decades has mainly foucused on biotic and abiotic resilience, sunflower oil content in hybrids has remained at the same level, 40-50%. Considering the trends of climate change, drought tolerance certainly represents an essential trait in breeding programs worldwide. The question arises whether it is time to further orient in sunflower breeding towards increasing oil content, bearing in mind that in light of increasingly frequent dry years. It is very difficult to make progress in seed yield. The aim of our study was to develop sunflower genotypes characterized by drought tolerance and increased oil content (>55%). Initial plant material was selected from a gene pool of the Institute of Field and Vegetable Crops, Novi Sad. We used a traditional approach by crossing highly drought tolerant inbred lines characterized by oil content ranging from 50-52%. Genetic material for drought tolerance was selected based on field trials and in vitro drought conditions, over six vegetations (3 vegetations in field conditions and 3 vegetations in in vitro conditions). Oil content was determined using nuclear magnetic resonance analyzer (NMR, Maran Ultra-10). The pedigree method of selection was used to develop new genetic material with desirable traits. As a result, we developed seven inbred lines designated as DO1 to DO7 characterized by high drought tolerance and high oil content ranging from 55.09% to 60.39%. Our results revealed that there is a possibility for significant improvement in sunflower oil content while simultaneously breeding for drought resistant. Further studies will include biotechnological tools in order to identify QTLs associated with drought tolerance and increased oil content and to develop markers associated with traits of interest in order to accelerate the breeding process.
PB  - International Sunflower Association (ISA)
C3  - Proceedings, 21st International Sunflower Conference, 20-24 August 2024, Wuyuan, China
T1  - Advances in sunflower breeding to increase oil content and drought resistance
EP  - 9
SP  - 9
UR  - https://hdl.handle.net/21.15107/rcub_fiver_4852
ER  - 
@conference{
author = "Miklič, Vladimir and Jocković, Milan and Jocić, Siniša and Cvejić, Sandra and Ćuk, Nemanja and Jocković, Jelena and Radanović, Aleksandra and Marjanović-Jeromela, Ana and Miladinović, Dragana and Grahovac, Nada",
year = "2024",
abstract = "Sunflower is a globally important oilseed crop mainly used for oil in human consumption, while secondary products have nutritional value in livestock feed. Neverthless there have been advancements in breeding sunflower genotypes with desirable traits, high yield, and disease resistance, further research is needed to address emerging challenges, such as climate resilience and sustainability. Bearing in mind that sunflower breeding over the last several decades has mainly foucused on biotic and abiotic resilience, sunflower oil content in hybrids has remained at the same level, 40-50%. Considering the trends of climate change, drought tolerance certainly represents an essential trait in breeding programs worldwide. The question arises whether it is time to further orient in sunflower breeding towards increasing oil content, bearing in mind that in light of increasingly frequent dry years. It is very difficult to make progress in seed yield. The aim of our study was to develop sunflower genotypes characterized by drought tolerance and increased oil content (>55%). Initial plant material was selected from a gene pool of the Institute of Field and Vegetable Crops, Novi Sad. We used a traditional approach by crossing highly drought tolerant inbred lines characterized by oil content ranging from 50-52%. Genetic material for drought tolerance was selected based on field trials and in vitro drought conditions, over six vegetations (3 vegetations in field conditions and 3 vegetations in in vitro conditions). Oil content was determined using nuclear magnetic resonance analyzer (NMR, Maran Ultra-10). The pedigree method of selection was used to develop new genetic material with desirable traits. As a result, we developed seven inbred lines designated as DO1 to DO7 characterized by high drought tolerance and high oil content ranging from 55.09% to 60.39%. Our results revealed that there is a possibility for significant improvement in sunflower oil content while simultaneously breeding for drought resistant. Further studies will include biotechnological tools in order to identify QTLs associated with drought tolerance and increased oil content and to develop markers associated with traits of interest in order to accelerate the breeding process.",
publisher = "International Sunflower Association (ISA)",
journal = "Proceedings, 21st International Sunflower Conference, 20-24 August 2024, Wuyuan, China",
title = "Advances in sunflower breeding to increase oil content and drought resistance",
pages = "9-9",
url = "https://hdl.handle.net/21.15107/rcub_fiver_4852"
}
Miklič, V., Jocković, M., Jocić, S., Cvejić, S., Ćuk, N., Jocković, J., Radanović, A., Marjanović-Jeromela, A., Miladinović, D.,& Grahovac, N.. (2024). Advances in sunflower breeding to increase oil content and drought resistance. in Proceedings, 21st International Sunflower Conference, 20-24 August 2024, Wuyuan, China
International Sunflower Association (ISA)., 9-9.
https://hdl.handle.net/21.15107/rcub_fiver_4852
Miklič V, Jocković M, Jocić S, Cvejić S, Ćuk N, Jocković J, Radanović A, Marjanović-Jeromela A, Miladinović D, Grahovac N. Advances in sunflower breeding to increase oil content and drought resistance. in Proceedings, 21st International Sunflower Conference, 20-24 August 2024, Wuyuan, China. 2024;:9-9.
https://hdl.handle.net/21.15107/rcub_fiver_4852 .
Miklič, Vladimir, Jocković, Milan, Jocić, Siniša, Cvejić, Sandra, Ćuk, Nemanja, Jocković, Jelena, Radanović, Aleksandra, Marjanović-Jeromela, Ana, Miladinović, Dragana, Grahovac, Nada, "Advances in sunflower breeding to increase oil content and drought resistance" in Proceedings, 21st International Sunflower Conference, 20-24 August 2024, Wuyuan, China (2024):9-9,
https://hdl.handle.net/21.15107/rcub_fiver_4852 .

Optimizing leaf area index in sunflower-legume intercropping system

Babec, Brankica; Ćuk, Nemanja; Šeremešić, Srđan; Hladni, Nada; Krstić, Miloš; Gvozdenac, Sonja; Jocić, Siniša; Miklič, Vladimir; Cvejić, Sandra

(International Sunflower Association (ISA), 2024)

TY  - CONF
AU  - Babec, Brankica
AU  - Ćuk, Nemanja
AU  - Šeremešić, Srđan
AU  - Hladni, Nada
AU  - Krstić, Miloš
AU  - Gvozdenac, Sonja
AU  - Jocić, Siniša
AU  - Miklič, Vladimir
AU  - Cvejić, Sandra
PY  - 2024
UR  - http://fiver.ifvcns.rs/handle/123456789/4860
AB  - The leaf area index (LAI) is one of the most common used indice for describing the above-ground biomass of crops, which is useful for understanding the complex roles of different factors on affecting the leaf development. The photosynthetic capacity of the sunflower plant is defined, by the leaf area index as well as the dynamics of its change during the vegetation period, whereas, photosynthesis is directly responsible for the accumulation of nutrients and yields. The goal of the research was to analyze LAI differences in s intercropping systems between sunflower and legume. A four-year trial (2017-2020) was conducted in Serbia’s agroecological conditions using a split-plot design. Two oil-type and one confectionary-type hybrid were intercropped with common vetch, red clover, and alfalfa. LAI was obtained using one direct and two indirect methods. The threshold for correlation coefficient indicating the statistical significance of the correlation in a matrix (critical r-value) for a probability of 95% (α 0.05) is 0.576, and for 99% probability (α 0.001) is 0.708.
PB  - International Sunflower Association (ISA)
C3  - Proceedings, 21st International Sunflower Conference, 20-24 August 2024, Wuyuan, China
T1  - Optimizing leaf area index in sunflower-legume intercropping system
EP  - 34
SP  - 33
UR  - https://hdl.handle.net/21.15107/rcub_fiver_4860
ER  - 
@conference{
author = "Babec, Brankica and Ćuk, Nemanja and Šeremešić, Srđan and Hladni, Nada and Krstić, Miloš and Gvozdenac, Sonja and Jocić, Siniša and Miklič, Vladimir and Cvejić, Sandra",
year = "2024",
abstract = "The leaf area index (LAI) is one of the most common used indice for describing the above-ground biomass of crops, which is useful for understanding the complex roles of different factors on affecting the leaf development. The photosynthetic capacity of the sunflower plant is defined, by the leaf area index as well as the dynamics of its change during the vegetation period, whereas, photosynthesis is directly responsible for the accumulation of nutrients and yields. The goal of the research was to analyze LAI differences in s intercropping systems between sunflower and legume. A four-year trial (2017-2020) was conducted in Serbia’s agroecological conditions using a split-plot design. Two oil-type and one confectionary-type hybrid were intercropped with common vetch, red clover, and alfalfa. LAI was obtained using one direct and two indirect methods. The threshold for correlation coefficient indicating the statistical significance of the correlation in a matrix (critical r-value) for a probability of 95% (α 0.05) is 0.576, and for 99% probability (α 0.001) is 0.708.",
publisher = "International Sunflower Association (ISA)",
journal = "Proceedings, 21st International Sunflower Conference, 20-24 August 2024, Wuyuan, China",
title = "Optimizing leaf area index in sunflower-legume intercropping system",
pages = "34-33",
url = "https://hdl.handle.net/21.15107/rcub_fiver_4860"
}
Babec, B., Ćuk, N., Šeremešić, S., Hladni, N., Krstić, M., Gvozdenac, S., Jocić, S., Miklič, V.,& Cvejić, S.. (2024). Optimizing leaf area index in sunflower-legume intercropping system. in Proceedings, 21st International Sunflower Conference, 20-24 August 2024, Wuyuan, China
International Sunflower Association (ISA)., 33-34.
https://hdl.handle.net/21.15107/rcub_fiver_4860
Babec B, Ćuk N, Šeremešić S, Hladni N, Krstić M, Gvozdenac S, Jocić S, Miklič V, Cvejić S. Optimizing leaf area index in sunflower-legume intercropping system. in Proceedings, 21st International Sunflower Conference, 20-24 August 2024, Wuyuan, China. 2024;:33-34.
https://hdl.handle.net/21.15107/rcub_fiver_4860 .
Babec, Brankica, Ćuk, Nemanja, Šeremešić, Srđan, Hladni, Nada, Krstić, Miloš, Gvozdenac, Sonja, Jocić, Siniša, Miklič, Vladimir, Cvejić, Sandra, "Optimizing leaf area index in sunflower-legume intercropping system" in Proceedings, 21st International Sunflower Conference, 20-24 August 2024, Wuyuan, China (2024):33-34,
https://hdl.handle.net/21.15107/rcub_fiver_4860 .

Innovations in sunflower breeding for enhanced drought adaptation

Cvejić, Sandra; Dedic, Bosko; Radanović, Aleksandra; Jocković, Milan; Lazić, Olivera; Gvozdenac, Sonja; Ćuk, Nemanja; Bursać, Srđan; Jocković, Jelena; Jocić, Siniša; Miladinović, Dragana

(International Sunflower Association (ISA), 2024)

TY  - CONF
AU  - Cvejić, Sandra
AU  - Dedic, Bosko
AU  - Radanović, Aleksandra
AU  - Jocković, Milan
AU  - Lazić, Olivera
AU  - Gvozdenac, Sonja
AU  - Ćuk, Nemanja
AU  - Bursać, Srđan
AU  - Jocković, Jelena
AU  - Jocić, Siniša
AU  - Miladinović, Dragana
PY  - 2024
UR  - http://fiver.ifvcns.rs/handle/123456789/4857
AB  - Among the effects of wide-ranging climate change, drought presents a significant
threat to global agricultural production. Drought reduces yield quantity and quality of crops,
particularly in the semi-arid and arid regions. Sunflower is known for its moderate tolerance
to water stress conditions thanks to its well-developed root system and ability to grow in
different agroecological conditions. However, prolonged exposure to drought significantly
reduces sunflower seed and oil yields, impacting global oil quality. Drought stress in
sunflower mostly occurs during the seedling stage, vegetative phase or reproductive phase.
Understanding the mechanisms and factors influencing drought tolerance is essential for
developing resilient sunflower capable of sustaining agricultural productivity in the face of
climate variability and water scarcity. Therefore, breeding for drought tolerance is an
economical, feasible, and environmentally friendly control method However, it requires the
use of the unexploited approach in sunflower research due to the complexity of the trait.
Initially, determination of the genetic diversity existing within and between sunflower species
remains the basis for elucidating of the genetic structure and for improvement of traits,
including drought tolerance. Manipulation of this diversity to improve drought tolerance
among sunflower genotypes may be achieved through selection of adaptive mechanisms that
include drought escape, avoidance and tolerance. The breeding tools and technologies for
drought tolerance are based on so-called “-omics” techniques, including phenomics,
genomics, transcriptomics, proteomics, metabolomics, and epigenomics. Phenomics refers to
a quantitative description of the plant's morphological, anatomical, ontogenetic, physiological,
and biochemical properties. Recent advancements in phenomics, facilitated by highthroughput phenotyping tools, empower researchers to explore multivariate phenotypic
information. Utilizing mainly non-invasive methods, phenotyping facilitates the measurement
of complex plant traits, pivotal for comprehending plant growth, development, and
interactions with the environment across various scales. Image-based techniques significantly
enhance the scale and efficiency of plant phenotyping activities, necessitating the
transformation of images into reliable and accurate phenotypic measurements. With
phenomics insights into plant traits, researchers can optimize phenotypes tailored to specific
climatic conditions and agronomic practices, with root traits playing a central role in
identifying features beneficial to crop performance and yield.
PB  - International Sunflower Association (ISA)
C3  - Proceedings, 21st International Sunflower Conference, 20-24 August 2024, Wuyuan, China
T1  - Innovations in sunflower breeding for enhanced drought adaptation
EP  - 88
SP  - 87
UR  - https://hdl.handle.net/21.15107/rcub_fiver_4857
ER  - 
@conference{
author = "Cvejić, Sandra and Dedic, Bosko and Radanović, Aleksandra and Jocković, Milan and Lazić, Olivera and Gvozdenac, Sonja and Ćuk, Nemanja and Bursać, Srđan and Jocković, Jelena and Jocić, Siniša and Miladinović, Dragana",
year = "2024",
abstract = "Among the effects of wide-ranging climate change, drought presents a significant
threat to global agricultural production. Drought reduces yield quantity and quality of crops,
particularly in the semi-arid and arid regions. Sunflower is known for its moderate tolerance
to water stress conditions thanks to its well-developed root system and ability to grow in
different agroecological conditions. However, prolonged exposure to drought significantly
reduces sunflower seed and oil yields, impacting global oil quality. Drought stress in
sunflower mostly occurs during the seedling stage, vegetative phase or reproductive phase.
Understanding the mechanisms and factors influencing drought tolerance is essential for
developing resilient sunflower capable of sustaining agricultural productivity in the face of
climate variability and water scarcity. Therefore, breeding for drought tolerance is an
economical, feasible, and environmentally friendly control method However, it requires the
use of the unexploited approach in sunflower research due to the complexity of the trait.
Initially, determination of the genetic diversity existing within and between sunflower species
remains the basis for elucidating of the genetic structure and for improvement of traits,
including drought tolerance. Manipulation of this diversity to improve drought tolerance
among sunflower genotypes may be achieved through selection of adaptive mechanisms that
include drought escape, avoidance and tolerance. The breeding tools and technologies for
drought tolerance are based on so-called “-omics” techniques, including phenomics,
genomics, transcriptomics, proteomics, metabolomics, and epigenomics. Phenomics refers to
a quantitative description of the plant's morphological, anatomical, ontogenetic, physiological,
and biochemical properties. Recent advancements in phenomics, facilitated by highthroughput phenotyping tools, empower researchers to explore multivariate phenotypic
information. Utilizing mainly non-invasive methods, phenotyping facilitates the measurement
of complex plant traits, pivotal for comprehending plant growth, development, and
interactions with the environment across various scales. Image-based techniques significantly
enhance the scale and efficiency of plant phenotyping activities, necessitating the
transformation of images into reliable and accurate phenotypic measurements. With
phenomics insights into plant traits, researchers can optimize phenotypes tailored to specific
climatic conditions and agronomic practices, with root traits playing a central role in
identifying features beneficial to crop performance and yield.",
publisher = "International Sunflower Association (ISA)",
journal = "Proceedings, 21st International Sunflower Conference, 20-24 August 2024, Wuyuan, China",
title = "Innovations in sunflower breeding for enhanced drought adaptation",
pages = "88-87",
url = "https://hdl.handle.net/21.15107/rcub_fiver_4857"
}
Cvejić, S., Dedic, B., Radanović, A., Jocković, M., Lazić, O., Gvozdenac, S., Ćuk, N., Bursać, S., Jocković, J., Jocić, S.,& Miladinović, D.. (2024). Innovations in sunflower breeding for enhanced drought adaptation. in Proceedings, 21st International Sunflower Conference, 20-24 August 2024, Wuyuan, China
International Sunflower Association (ISA)., 87-88.
https://hdl.handle.net/21.15107/rcub_fiver_4857
Cvejić S, Dedic B, Radanović A, Jocković M, Lazić O, Gvozdenac S, Ćuk N, Bursać S, Jocković J, Jocić S, Miladinović D. Innovations in sunflower breeding for enhanced drought adaptation. in Proceedings, 21st International Sunflower Conference, 20-24 August 2024, Wuyuan, China. 2024;:87-88.
https://hdl.handle.net/21.15107/rcub_fiver_4857 .
Cvejić, Sandra, Dedic, Bosko, Radanović, Aleksandra, Jocković, Milan, Lazić, Olivera, Gvozdenac, Sonja, Ćuk, Nemanja, Bursać, Srđan, Jocković, Jelena, Jocić, Siniša, Miladinović, Dragana, "Innovations in sunflower breeding for enhanced drought adaptation" in Proceedings, 21st International Sunflower Conference, 20-24 August 2024, Wuyuan, China (2024):87-88,
https://hdl.handle.net/21.15107/rcub_fiver_4857 .

Unravelling mechanisms of drought tolerance and stress recovery in sunflower

Radanović, Aleksandra; Cvejić, Sandra; Dedic, Bosko; Jocković, Milan; Bursać, Srđan; Ćuk, Nemanja; Jocković, Jelena; Jocić, Siniša; Miladinović, Dragana

(International Sunflower Association (ISA), 2024)

TY  - CONF
AU  - Radanović, Aleksandra
AU  - Cvejić, Sandra
AU  - Dedic, Bosko
AU  - Jocković, Milan
AU  - Bursać, Srđan
AU  - Ćuk, Nemanja
AU  - Jocković, Jelena
AU  - Jocić, Siniša
AU  - Miladinović, Dragana
PY  - 2024
UR  - http://fiver.ifvcns.rs/handle/123456789/4856
AB  - Drought is a global threat to food security and is a major abiotic factor limiting
crop production. Enhancing drought tolerance in crops is therefore a critical goal in breeding
programs worldwide. Despite being considered a moderately drought-tolerant crop,
sunflower’s production is still affected by drought. Drought tolerance is a complex trait, that
triggers numerous responses at morphological, physiological and molecular levels. Hence, a
comprehensive approach is needed to decipher the underlying mechanisms in sunflower.
At the Institute of Field and Vegetable Crops (IFVCNS), we have created a broad sunflower
panel of nearly 50 IFVCNS inbred lines, that were tested under in vitro conditions. Through
comprehensive phenotyping, we identify traits associated with drought tolerance. The most
drought-tolerant and sensitive genotypes were identified and subjected to further testing in pot
experiments to validate the in vitro results and to examine sunflower responses to drought
stress at later development stages on transcriptomic and epigenetic levels. Additionally, the
recovery capacity of the genotypes is being examined. Current efforts are focused on
determine the key mechanisms involved in drought tolerance by analyzing gene expression,
transcriptome and epigenome variations. The goal of this research is to identify stable
drought-induced transcriptomic and epigenetic variations, as well as target genes and
epiQTLs, that can be used in marker-assisted breeding.
PB  - International Sunflower Association (ISA)
C3  - Proceedings, 21st International Sunflower Conference, 20-24 August 2024, Wuyuan, China
T1  - Unravelling mechanisms of drought tolerance and stress recovery in sunflower
EP  - 77
SP  - 77
UR  - https://hdl.handle.net/21.15107/rcub_fiver_4856
ER  - 
@conference{
author = "Radanović, Aleksandra and Cvejić, Sandra and Dedic, Bosko and Jocković, Milan and Bursać, Srđan and Ćuk, Nemanja and Jocković, Jelena and Jocić, Siniša and Miladinović, Dragana",
year = "2024",
abstract = "Drought is a global threat to food security and is a major abiotic factor limiting
crop production. Enhancing drought tolerance in crops is therefore a critical goal in breeding
programs worldwide. Despite being considered a moderately drought-tolerant crop,
sunflower’s production is still affected by drought. Drought tolerance is a complex trait, that
triggers numerous responses at morphological, physiological and molecular levels. Hence, a
comprehensive approach is needed to decipher the underlying mechanisms in sunflower.
At the Institute of Field and Vegetable Crops (IFVCNS), we have created a broad sunflower
panel of nearly 50 IFVCNS inbred lines, that were tested under in vitro conditions. Through
comprehensive phenotyping, we identify traits associated with drought tolerance. The most
drought-tolerant and sensitive genotypes were identified and subjected to further testing in pot
experiments to validate the in vitro results and to examine sunflower responses to drought
stress at later development stages on transcriptomic and epigenetic levels. Additionally, the
recovery capacity of the genotypes is being examined. Current efforts are focused on
determine the key mechanisms involved in drought tolerance by analyzing gene expression,
transcriptome and epigenome variations. The goal of this research is to identify stable
drought-induced transcriptomic and epigenetic variations, as well as target genes and
epiQTLs, that can be used in marker-assisted breeding.",
publisher = "International Sunflower Association (ISA)",
journal = "Proceedings, 21st International Sunflower Conference, 20-24 August 2024, Wuyuan, China",
title = "Unravelling mechanisms of drought tolerance and stress recovery in sunflower",
pages = "77-77",
url = "https://hdl.handle.net/21.15107/rcub_fiver_4856"
}
Radanović, A., Cvejić, S., Dedic, B., Jocković, M., Bursać, S., Ćuk, N., Jocković, J., Jocić, S.,& Miladinović, D.. (2024). Unravelling mechanisms of drought tolerance and stress recovery in sunflower. in Proceedings, 21st International Sunflower Conference, 20-24 August 2024, Wuyuan, China
International Sunflower Association (ISA)., 77-77.
https://hdl.handle.net/21.15107/rcub_fiver_4856
Radanović A, Cvejić S, Dedic B, Jocković M, Bursać S, Ćuk N, Jocković J, Jocić S, Miladinović D. Unravelling mechanisms of drought tolerance and stress recovery in sunflower. in Proceedings, 21st International Sunflower Conference, 20-24 August 2024, Wuyuan, China. 2024;:77-77.
https://hdl.handle.net/21.15107/rcub_fiver_4856 .
Radanović, Aleksandra, Cvejić, Sandra, Dedic, Bosko, Jocković, Milan, Bursać, Srđan, Ćuk, Nemanja, Jocković, Jelena, Jocić, Siniša, Miladinović, Dragana, "Unravelling mechanisms of drought tolerance and stress recovery in sunflower" in Proceedings, 21st International Sunflower Conference, 20-24 August 2024, Wuyuan, China (2024):77-77,
https://hdl.handle.net/21.15107/rcub_fiver_4856 .

Genetic and molecular characterization of charcoal rot resistance in sunflower

Ćuk, Nemanja; Cvejić, Sandra; Radanović, Aleksandra; Jocić, Siniša; Miladinović, Dragana; Miklic, Vladimir; Jocković, Milan; Jocković, Jelena; Babec, Brankica; Krstić, Miloš; Dedic, Bosko

(International Sunflower Association (ISA), 2024)

TY  - CONF
AU  - Ćuk, Nemanja
AU  - Cvejić, Sandra
AU  - Radanović, Aleksandra
AU  - Jocić, Siniša
AU  - Miladinović, Dragana
AU  - Miklic, Vladimir
AU  - Jocković, Milan
AU  - Jocković, Jelena
AU  - Babec, Brankica
AU  - Krstić, Miloš
AU  - Dedic, Bosko
PY  - 2024
UR  - http://fiver.ifvcns.rs/handle/123456789/4853
AB  - Charcoal rot, caused by Macrophomina phaseolina, is a soil-borne plant pathogen,
and presents a significant threat to sunflower cultivation, impacting regions across the globe,
particularly under drought stress. This disease can substantially decrease sunflower seed
yields, with yield reductions of around 20% potentially reaching up to 90% in severe cases.
Limited information about the inheritance of charcoal rot resistance is available to sunflower
breeders. To study the inheritance of charcoal rot disease resistance in sunflower. We
developed two distinct populations of totaling 200 genotypes from the F2 generation of
sunflowers for genetic and molecular screening. The first population originated from crossing
inbred lines AB OR 8 and PB 21, while the second is from crossing VL A 8 PR and AB OR
8. Notably, AB OR 8 is classified as a highly susceptible line, whereas PB 21 and VL A 8 PR
were resistant. The segregation ratio was investigated in F3 populations using the cut-stem
method of inoculation. Based on the obtained data, it was determined that the resistance to M.
phaseolina in sunflower does not correspond to the theoretical segregation pattern, indicating
the presence of more than two genes involved in inheritance of resistance. For the analysis of
resistance QTLs, we exploited SSR markers that were equally distributed throughout the
sunflower genome. The majority of significantly associated SSR resistance markers were not
common to the two mapping populations, except for two, OR S995 and ORS1265, which
displayed consistent efficacy across both populations, suggesting their potential as robust
indicators. Future research should explore these markers further, as well as include more
markers, particularly in larger population samples, to validate their utility comprehensively
PB  - International Sunflower Association (ISA)
C3  - Proceedings, 21st International Sunflower Conference, 20-24 August 2024, Wuyuan, China
T1  - Genetic and molecular characterization of charcoal rot resistance in sunflower
EP  - 8
SP  - 8
UR  - https://hdl.handle.net/21.15107/rcub_fiver_4853
ER  - 
@conference{
author = "Ćuk, Nemanja and Cvejić, Sandra and Radanović, Aleksandra and Jocić, Siniša and Miladinović, Dragana and Miklic, Vladimir and Jocković, Milan and Jocković, Jelena and Babec, Brankica and Krstić, Miloš and Dedic, Bosko",
year = "2024",
abstract = "Charcoal rot, caused by Macrophomina phaseolina, is a soil-borne plant pathogen,
and presents a significant threat to sunflower cultivation, impacting regions across the globe,
particularly under drought stress. This disease can substantially decrease sunflower seed
yields, with yield reductions of around 20% potentially reaching up to 90% in severe cases.
Limited information about the inheritance of charcoal rot resistance is available to sunflower
breeders. To study the inheritance of charcoal rot disease resistance in sunflower. We
developed two distinct populations of totaling 200 genotypes from the F2 generation of
sunflowers for genetic and molecular screening. The first population originated from crossing
inbred lines AB OR 8 and PB 21, while the second is from crossing VL A 8 PR and AB OR
8. Notably, AB OR 8 is classified as a highly susceptible line, whereas PB 21 and VL A 8 PR
were resistant. The segregation ratio was investigated in F3 populations using the cut-stem
method of inoculation. Based on the obtained data, it was determined that the resistance to M.
phaseolina in sunflower does not correspond to the theoretical segregation pattern, indicating
the presence of more than two genes involved in inheritance of resistance. For the analysis of
resistance QTLs, we exploited SSR markers that were equally distributed throughout the
sunflower genome. The majority of significantly associated SSR resistance markers were not
common to the two mapping populations, except for two, OR S995 and ORS1265, which
displayed consistent efficacy across both populations, suggesting their potential as robust
indicators. Future research should explore these markers further, as well as include more
markers, particularly in larger population samples, to validate their utility comprehensively",
publisher = "International Sunflower Association (ISA)",
journal = "Proceedings, 21st International Sunflower Conference, 20-24 August 2024, Wuyuan, China",
title = "Genetic and molecular characterization of charcoal rot resistance in sunflower",
pages = "8-8",
url = "https://hdl.handle.net/21.15107/rcub_fiver_4853"
}
Ćuk, N., Cvejić, S., Radanović, A., Jocić, S., Miladinović, D., Miklic, V., Jocković, M., Jocković, J., Babec, B., Krstić, M.,& Dedic, B.. (2024). Genetic and molecular characterization of charcoal rot resistance in sunflower. in Proceedings, 21st International Sunflower Conference, 20-24 August 2024, Wuyuan, China
International Sunflower Association (ISA)., 8-8.
https://hdl.handle.net/21.15107/rcub_fiver_4853
Ćuk N, Cvejić S, Radanović A, Jocić S, Miladinović D, Miklic V, Jocković M, Jocković J, Babec B, Krstić M, Dedic B. Genetic and molecular characterization of charcoal rot resistance in sunflower. in Proceedings, 21st International Sunflower Conference, 20-24 August 2024, Wuyuan, China. 2024;:8-8.
https://hdl.handle.net/21.15107/rcub_fiver_4853 .
Ćuk, Nemanja, Cvejić, Sandra, Radanović, Aleksandra, Jocić, Siniša, Miladinović, Dragana, Miklic, Vladimir, Jocković, Milan, Jocković, Jelena, Babec, Brankica, Krstić, Miloš, Dedic, Bosko, "Genetic and molecular characterization of charcoal rot resistance in sunflower" in Proceedings, 21st International Sunflower Conference, 20-24 August 2024, Wuyuan, China (2024):8-8,
https://hdl.handle.net/21.15107/rcub_fiver_4853 .

Secretory Tissues and Volatile Components of Disc Florets in Several Wild Helianthus L. Species

Jocković, Jelena; Rajčević, Nemanja; Zorić, Lana; Jocković, Milan; Radanović, Aleksandra; Cvejić, Sandra; Jocić, Siniša; Vujisić, Ljubodrag; Miladinović, Dragana; Miklič, Vladimir; Luković, Jadranka

(Basel : MDPI, 2024)

TY  - JOUR
AU  - Jocković, Jelena
AU  - Rajčević, Nemanja
AU  - Zorić, Lana
AU  - Jocković, Milan
AU  - Radanović, Aleksandra
AU  - Cvejić, Sandra
AU  - Jocić, Siniša
AU  - Vujisić, Ljubodrag
AU  - Miladinović, Dragana
AU  - Miklič, Vladimir
AU  - Luković, Jadranka
PY  - 2024
UR  - http://fiver.ifvcns.rs/handle/123456789/4287
AB  - Although flower pollinator interactions are known to be mediated by floral traits, not enough attention has been paid to the research of secretory tissues and volatile components of sunflower disc florets as potentially important parameters in breeding programs. (1) To our knowledge, this is the first integrated study aimed at better understanding the attractiveness of sunflower capitula to insects. In the study, we have made a very detailed comparative analysis of secretory tissues and the characterization of the volatile components (VOCs) of disc florets in 10 wild perennial Helianthus species. (2) For anatomical analyses, cross-sections were obtained from the nectary zone of disc florets using a cryotechnique procedure. Micromorphological observation and morphological and anatomical analysis of disc florets were performed using light and scanning electron microscopy. For VOCs, we applied headspace, GC-FID, and GC/MS analyses. (3) The obtained results indicate that there is a difference between the analyzed traits among studied species. H. eggertii, H. hirsutus, H. mollis, H. resinosus, and H. tuberosus had high disc diameter values, a high cross-section area and disc floret corolla length, as well as the largest cross-section area and thickness of the disc florets nectary. In the analyzed VOCs, 30 different compounds were detected. The highest yield and quantity of α-Pinene was observed in H. mollis. (4) Inflorescence features, such as receptacle diameter, corolla and secretory tissue properties, and floret VOCs production and characterization, provided valuable information that can be used as guidelines in sunflower breeding programs to maximize pollinator attractiveness and increase seed yield.
PB  - Basel : MDPI
T2  - Plants - Basel
T1  - Secretory Tissues and Volatile Components of Disc Florets in Several Wild Helianthus L. Species
IS  - 3
SP  - 345
VL  - 13
DO  - 10.3390/plants13030345
ER  - 
@article{
author = "Jocković, Jelena and Rajčević, Nemanja and Zorić, Lana and Jocković, Milan and Radanović, Aleksandra and Cvejić, Sandra and Jocić, Siniša and Vujisić, Ljubodrag and Miladinović, Dragana and Miklič, Vladimir and Luković, Jadranka",
year = "2024",
abstract = "Although flower pollinator interactions are known to be mediated by floral traits, not enough attention has been paid to the research of secretory tissues and volatile components of sunflower disc florets as potentially important parameters in breeding programs. (1) To our knowledge, this is the first integrated study aimed at better understanding the attractiveness of sunflower capitula to insects. In the study, we have made a very detailed comparative analysis of secretory tissues and the characterization of the volatile components (VOCs) of disc florets in 10 wild perennial Helianthus species. (2) For anatomical analyses, cross-sections were obtained from the nectary zone of disc florets using a cryotechnique procedure. Micromorphological observation and morphological and anatomical analysis of disc florets were performed using light and scanning electron microscopy. For VOCs, we applied headspace, GC-FID, and GC/MS analyses. (3) The obtained results indicate that there is a difference between the analyzed traits among studied species. H. eggertii, H. hirsutus, H. mollis, H. resinosus, and H. tuberosus had high disc diameter values, a high cross-section area and disc floret corolla length, as well as the largest cross-section area and thickness of the disc florets nectary. In the analyzed VOCs, 30 different compounds were detected. The highest yield and quantity of α-Pinene was observed in H. mollis. (4) Inflorescence features, such as receptacle diameter, corolla and secretory tissue properties, and floret VOCs production and characterization, provided valuable information that can be used as guidelines in sunflower breeding programs to maximize pollinator attractiveness and increase seed yield.",
publisher = "Basel : MDPI",
journal = "Plants - Basel",
title = "Secretory Tissues and Volatile Components of Disc Florets in Several Wild Helianthus L. Species",
number = "3",
pages = "345",
volume = "13",
doi = "10.3390/plants13030345"
}
Jocković, J., Rajčević, N., Zorić, L., Jocković, M., Radanović, A., Cvejić, S., Jocić, S., Vujisić, L., Miladinović, D., Miklič, V.,& Luković, J.. (2024). Secretory Tissues and Volatile Components of Disc Florets in Several Wild Helianthus L. Species. in Plants - Basel
Basel : MDPI., 13(3), 345.
https://doi.org/10.3390/plants13030345
Jocković J, Rajčević N, Zorić L, Jocković M, Radanović A, Cvejić S, Jocić S, Vujisić L, Miladinović D, Miklič V, Luković J. Secretory Tissues and Volatile Components of Disc Florets in Several Wild Helianthus L. Species. in Plants - Basel. 2024;13(3):345.
doi:10.3390/plants13030345 .
Jocković, Jelena, Rajčević, Nemanja, Zorić, Lana, Jocković, Milan, Radanović, Aleksandra, Cvejić, Sandra, Jocić, Siniša, Vujisić, Ljubodrag, Miladinović, Dragana, Miklič, Vladimir, Luković, Jadranka, "Secretory Tissues and Volatile Components of Disc Florets in Several Wild Helianthus L. Species" in Plants - Basel, 13, no. 3 (2024):345,
https://doi.org/10.3390/plants13030345 . .

Screening of annual wild Helianthus species for Frankliniella occidentalis tolerance

Jocković, Jelena; Gvozdenac, Sonja; Paleš, Ana; Cvejić, Sandra; Jocković, Milan; Dedić, Boško; Ćuk, Nemanja

(Banja Luka : University of Banja Luka, Faculty of Agriculture, 2024)

TY  - CONF
AU  - Jocković, Jelena
AU  - Gvozdenac, Sonja
AU  - Paleš, Ana
AU  - Cvejić, Sandra
AU  - Jocković, Milan
AU  - Dedić, Boško
AU  - Ćuk, Nemanja
PY  - 2024
UR  - http://fiver.ifvcns.rs/handle/123456789/4665
AB  - Frankliniella occidentalis (thrips) is a widespread polyphagous insect pest that causes damage and yield losses. Control of this and other thrips species is challenging due to the emergence of insecticide-resistant populations. Wild sunflower species have proven useful in sunflower breeding programs as a source of resistance genes. Therefore, this work is aimed to evaluate the suseptibility of five annual wild species of Helianthus (H. annuus, H. argophillus, H. neglectus, H. praecox and H. petiolaris) in relation to the tolerance of F. occidentalis. The bioassay was set up in a greenhouse with an uncontrolled thrips population, in ten replicates. The number of adults of F. occidentalis was counted twice during the experiment, within ten days, from five leaves of each plant (replication). The density of non-glandular trichomes on both epidermises was analyzed with a light microscope on the same leaves (except H. argophyllus). According to our results, the highest average number of thrips adults was on H. annuus and H. argophilus during both observation periods that also have a very dense indumetnum. The most tolerant, with the lowest number of thrips adults were H. praecox and H. neglectus, characterized with less developed indumentum. According to our results, we can conclude that the density of non-glandular trichomes does not affect the preference of F. occidentalis. However, the development and distribution of the leaf epidermal cuticle, epicuticular waxes and glandular trichomes (capitate and linear) may be related to the degree of resistance, which is the subject of our future research.
PB  - Banja Luka : University of Banja Luka, Faculty of Agriculture
C3  - Book of Abstracts, 13th International Symposium on Agricultural Sciences “AgroReS 2024”, 27-30 May 2024, Trebinje, Bosnia and Herzegovina
T1  - Screening of annual wild Helianthus species for Frankliniella occidentalis tolerance
EP  - 170
SP  - 170
UR  - https://hdl.handle.net/21.15107/rcub_fiver_4665
ER  - 
@conference{
author = "Jocković, Jelena and Gvozdenac, Sonja and Paleš, Ana and Cvejić, Sandra and Jocković, Milan and Dedić, Boško and Ćuk, Nemanja",
year = "2024",
abstract = "Frankliniella occidentalis (thrips) is a widespread polyphagous insect pest that causes damage and yield losses. Control of this and other thrips species is challenging due to the emergence of insecticide-resistant populations. Wild sunflower species have proven useful in sunflower breeding programs as a source of resistance genes. Therefore, this work is aimed to evaluate the suseptibility of five annual wild species of Helianthus (H. annuus, H. argophillus, H. neglectus, H. praecox and H. petiolaris) in relation to the tolerance of F. occidentalis. The bioassay was set up in a greenhouse with an uncontrolled thrips population, in ten replicates. The number of adults of F. occidentalis was counted twice during the experiment, within ten days, from five leaves of each plant (replication). The density of non-glandular trichomes on both epidermises was analyzed with a light microscope on the same leaves (except H. argophyllus). According to our results, the highest average number of thrips adults was on H. annuus and H. argophilus during both observation periods that also have a very dense indumetnum. The most tolerant, with the lowest number of thrips adults were H. praecox and H. neglectus, characterized with less developed indumentum. According to our results, we can conclude that the density of non-glandular trichomes does not affect the preference of F. occidentalis. However, the development and distribution of the leaf epidermal cuticle, epicuticular waxes and glandular trichomes (capitate and linear) may be related to the degree of resistance, which is the subject of our future research.",
publisher = "Banja Luka : University of Banja Luka, Faculty of Agriculture",
journal = "Book of Abstracts, 13th International Symposium on Agricultural Sciences “AgroReS 2024”, 27-30 May 2024, Trebinje, Bosnia and Herzegovina",
title = "Screening of annual wild Helianthus species for Frankliniella occidentalis tolerance",
pages = "170-170",
url = "https://hdl.handle.net/21.15107/rcub_fiver_4665"
}
Jocković, J., Gvozdenac, S., Paleš, A., Cvejić, S., Jocković, M., Dedić, B.,& Ćuk, N.. (2024). Screening of annual wild Helianthus species for Frankliniella occidentalis tolerance. in Book of Abstracts, 13th International Symposium on Agricultural Sciences “AgroReS 2024”, 27-30 May 2024, Trebinje, Bosnia and Herzegovina
Banja Luka : University of Banja Luka, Faculty of Agriculture., 170-170.
https://hdl.handle.net/21.15107/rcub_fiver_4665
Jocković J, Gvozdenac S, Paleš A, Cvejić S, Jocković M, Dedić B, Ćuk N. Screening of annual wild Helianthus species for Frankliniella occidentalis tolerance. in Book of Abstracts, 13th International Symposium on Agricultural Sciences “AgroReS 2024”, 27-30 May 2024, Trebinje, Bosnia and Herzegovina. 2024;:170-170.
https://hdl.handle.net/21.15107/rcub_fiver_4665 .
Jocković, Jelena, Gvozdenac, Sonja, Paleš, Ana, Cvejić, Sandra, Jocković, Milan, Dedić, Boško, Ćuk, Nemanja, "Screening of annual wild Helianthus species for Frankliniella occidentalis tolerance" in Book of Abstracts, 13th International Symposium on Agricultural Sciences “AgroReS 2024”, 27-30 May 2024, Trebinje, Bosnia and Herzegovina (2024):170-170,
https://hdl.handle.net/21.15107/rcub_fiver_4665 .

Biochemical response of sunflower inbred lines inoculated with Macrophomina phaseolina

Ćuk, Nemanja; Kiprovski, Biljana; Cvejić, Sandra; Dedić, Boško; Babec, Brankica; Krstić, Miloš; Jocić, Siniša; Miklič, Vladimir; Jocković, Jelena; Jocković, Milan; Mladenov, Velimir

(COST Association, 2024)

TY  - CONF
AU  - Ćuk, Nemanja
AU  - Kiprovski, Biljana
AU  - Cvejić, Sandra
AU  - Dedić, Boško
AU  - Babec, Brankica
AU  - Krstić, Miloš
AU  - Jocić, Siniša
AU  - Miklič, Vladimir
AU  - Jocković, Jelena
AU  - Jocković, Milan
AU  - Mladenov, Velimir
PY  - 2024
UR  - http://fiver.ifvcns.rs/handle/123456789/4697
AB  - Macrophomina phaseolina, the causative agent of charcoal rot, affects a wide array of plant hosts, including sunflower. This disease thrives in warm, arid conditions, leading to symptoms such as the wilting, drying, and premature ripening of sunflower plants. This study aims to explore the biochemical responses of 15 inbred lines, each exhibiting varying levels of resistance, to uncover potential correlations between resistance levels and biochemical reactions in sunflower inbred lines. The investigation focused on: total protein content (TPC), lipid peroxidation intensity as a marker of membrane integrity (LP), reduced glutathione (GSH), superoxide-dismutase activity (SOD), and total phenolic content as antioxidant compounds (TP). These parameters were assessed 10 days following the laboratory inoculation of inbred lines with the pathogen and compared with disease severity. Correlations between resistance levels and the results of these five assays were analyzed in conjunction with disease severity observed in the inbred lines. Remarkably, after the 10-day assessment period, only the total phenolic content showed a significant positive correlation with the resistance of inbred lines (r=0.712; p<0.05). This finding identified inbred lines PB 21 and L 1 as the most resilient among the tested varieties. It was observed that different inbred lines exhibit distinct responses to M. phaseolina. However, in the majority of cases, an increase in total phenolic content was noted in sunflower plants following inoculation. This suggests a potential defensive mechanism triggered by the pathogen. Further studies can analyze more precisely into the molecular intricacies of sunflower resistance to charcoal rot and validate these findings across broader genetic backgrounds.
PB  - COST Association
C3  - Book of Abstracts, 4th EPI-CATCH Conference Epigenetic Mechanisms of Crop Adaptation to Climate Change, Novi Sad, 4-6 June 2024
T1  - Biochemical response of sunflower inbred lines inoculated with Macrophomina phaseolina
EP  - 28
SP  - 28
UR  - https://hdl.handle.net/21.15107/rcub_fiver_4697
ER  - 
@conference{
author = "Ćuk, Nemanja and Kiprovski, Biljana and Cvejić, Sandra and Dedić, Boško and Babec, Brankica and Krstić, Miloš and Jocić, Siniša and Miklič, Vladimir and Jocković, Jelena and Jocković, Milan and Mladenov, Velimir",
year = "2024",
abstract = "Macrophomina phaseolina, the causative agent of charcoal rot, affects a wide array of plant hosts, including sunflower. This disease thrives in warm, arid conditions, leading to symptoms such as the wilting, drying, and premature ripening of sunflower plants. This study aims to explore the biochemical responses of 15 inbred lines, each exhibiting varying levels of resistance, to uncover potential correlations between resistance levels and biochemical reactions in sunflower inbred lines. The investigation focused on: total protein content (TPC), lipid peroxidation intensity as a marker of membrane integrity (LP), reduced glutathione (GSH), superoxide-dismutase activity (SOD), and total phenolic content as antioxidant compounds (TP). These parameters were assessed 10 days following the laboratory inoculation of inbred lines with the pathogen and compared with disease severity. Correlations between resistance levels and the results of these five assays were analyzed in conjunction with disease severity observed in the inbred lines. Remarkably, after the 10-day assessment period, only the total phenolic content showed a significant positive correlation with the resistance of inbred lines (r=0.712; p<0.05). This finding identified inbred lines PB 21 and L 1 as the most resilient among the tested varieties. It was observed that different inbred lines exhibit distinct responses to M. phaseolina. However, in the majority of cases, an increase in total phenolic content was noted in sunflower plants following inoculation. This suggests a potential defensive mechanism triggered by the pathogen. Further studies can analyze more precisely into the molecular intricacies of sunflower resistance to charcoal rot and validate these findings across broader genetic backgrounds.",
publisher = "COST Association",
journal = "Book of Abstracts, 4th EPI-CATCH Conference Epigenetic Mechanisms of Crop Adaptation to Climate Change, Novi Sad, 4-6 June 2024",
title = "Biochemical response of sunflower inbred lines inoculated with Macrophomina phaseolina",
pages = "28-28",
url = "https://hdl.handle.net/21.15107/rcub_fiver_4697"
}
Ćuk, N., Kiprovski, B., Cvejić, S., Dedić, B., Babec, B., Krstić, M., Jocić, S., Miklič, V., Jocković, J., Jocković, M.,& Mladenov, V.. (2024). Biochemical response of sunflower inbred lines inoculated with Macrophomina phaseolina. in Book of Abstracts, 4th EPI-CATCH Conference Epigenetic Mechanisms of Crop Adaptation to Climate Change, Novi Sad, 4-6 June 2024
COST Association., 28-28.
https://hdl.handle.net/21.15107/rcub_fiver_4697
Ćuk N, Kiprovski B, Cvejić S, Dedić B, Babec B, Krstić M, Jocić S, Miklič V, Jocković J, Jocković M, Mladenov V. Biochemical response of sunflower inbred lines inoculated with Macrophomina phaseolina. in Book of Abstracts, 4th EPI-CATCH Conference Epigenetic Mechanisms of Crop Adaptation to Climate Change, Novi Sad, 4-6 June 2024. 2024;:28-28.
https://hdl.handle.net/21.15107/rcub_fiver_4697 .
Ćuk, Nemanja, Kiprovski, Biljana, Cvejić, Sandra, Dedić, Boško, Babec, Brankica, Krstić, Miloš, Jocić, Siniša, Miklič, Vladimir, Jocković, Jelena, Jocković, Milan, Mladenov, Velimir, "Biochemical response of sunflower inbred lines inoculated with Macrophomina phaseolina" in Book of Abstracts, 4th EPI-CATCH Conference Epigenetic Mechanisms of Crop Adaptation to Climate Change, Novi Sad, 4-6 June 2024 (2024):28-28,
https://hdl.handle.net/21.15107/rcub_fiver_4697 .

Production of sunflower seed under new climate conditions

Miklič, Vladimir; Dušanić, Nenad; Ostojić, Branislav; Radić, Velimir; Krstić, Miloš; Jokić, Goran; Butaš, Daliborka; Ovuka, Jelena; Balalić, Igor; Jocić, Siniša; Hladni, Nada; Marjanović-Jeromela, Ana; Cvejić, Sandra; Jocković, Milan; Ćuk, Nemanja; Miladinović, Dragana

(International Sunflower Association (ISA), 2024)

TY  - CONF
AU  - Miklič, Vladimir
AU  - Dušanić, Nenad
AU  - Ostojić, Branislav
AU  - Radić, Velimir
AU  - Krstić, Miloš
AU  - Jokić, Goran
AU  - Butaš, Daliborka
AU  - Ovuka, Jelena
AU  - Balalić, Igor
AU  - Jocić, Siniša
AU  - Hladni, Nada
AU  - Marjanović-Jeromela, Ana
AU  - Cvejić, Sandra
AU  - Jocković, Milan
AU  - Ćuk, Nemanja
AU  - Miladinović, Dragana
PY  - 2024
UR  - http://fiver.ifvcns.rs/handle/123456789/4850
AB  - Sunflower is the third largest oil crop and in 2023 it was grown on over 28 million hectares in the world. With the discovery of the CMS source in 1969, sunflower hybrids began to be created. The first commercial hybrids based on CMS were registered in Romania, in 1974 and in Yugoslavia, in 1978. It is estimated that hybrids are grown on around 85% of the total sunflower planting area today, and the remaining 15% are still landrace varieties, mostly of the confectionery type. Therefore, the requirement for hybrid sunflower seeds in the world today is around 120 million kg (about 12 million bags of 150,000 grains). To reach to this amount, the sunflower will be with an average yield of 700 kg/ha of processed seeds, it is necessary to plant sunflower with area about 170,000 ha. The total commercial hybrid sunflower seed production is estimated at USD 2 billion today. The production of hybrid sunflower seeds today is exposed to many new challenges. Global climate change facilitate warming environmentally, thus make drought and stormy winds occurrence. By monitoring the daily dynamics of bee visits, we determined that the maximum number of visits occurs at air temperatures between 20 and 28℃, and air humidity of 40-50%. In recent years, the average temperature in Serbia has increased by nearly 2℃ compared to the multi-year average. This has a negative effect on the vitality of pollen and fertilization, as well as on the visit of bees, so the recommendations for supplying beehives have increased from 2 to 4/ha. Bees are the most important pollinators for sunflower and on average make up 71% of the total visit (in some years over 90%), the insects is mainly from the Syrfidae family (19% of visits), bumblebees (8%) and butterflies (2%), whose populations are constantly decreasing. Due to the increase in the sunflower planting area, it is increasingly difficult to ensure spatial isolation of insects, it decreases to 500 m in many countries, and this already leads to increased foreign fertilization and the spread of wild sunflowers, which is especially dangerous if they carry some of the genes for resistance to herbicides. In the last 20 years, many herbicides, insecticides and fungicides have lost their registration, especially in Europe. Seed treatment makes sunflower production especially difficult, as well as the international trade of seeds, because the situation differs among different countries. With the announced cancellation of the license for Reglone desiccant, the situation is further aggravated and higher costs can be expected (primarily due to drying), but also a significantly drop in yield and seed quality. The potential substitutes techniques we tried to create (Kabuki, carfentrazone, pelargonic acid, glyphosate...) did not have good results. Problems with high fluctuations in mercantile prices and the increased price  of energy and fertilizers, with a lack of labor and especially with the war in Ukraine, leads the restrictions on seed trade in Russia, significantly affect the sunflower production, thus leading to an increasing risk on the price of sunflower seeds in the future.
PB  - International Sunflower Association (ISA)
C3  - Proceedings, 21st International Sunflower Conference, 20-24 August 2024, Wuyuan, Inner Mongolia, China
T1  - Production of sunflower seed under new climate conditions
EP  - 27
SP  - 27
UR  - https://hdl.handle.net/21.15107/rcub_fiver_4850
ER  - 
@conference{
author = "Miklič, Vladimir and Dušanić, Nenad and Ostojić, Branislav and Radić, Velimir and Krstić, Miloš and Jokić, Goran and Butaš, Daliborka and Ovuka, Jelena and Balalić, Igor and Jocić, Siniša and Hladni, Nada and Marjanović-Jeromela, Ana and Cvejić, Sandra and Jocković, Milan and Ćuk, Nemanja and Miladinović, Dragana",
year = "2024",
abstract = "Sunflower is the third largest oil crop and in 2023 it was grown on over 28 million hectares in the world. With the discovery of the CMS source in 1969, sunflower hybrids began to be created. The first commercial hybrids based on CMS were registered in Romania, in 1974 and in Yugoslavia, in 1978. It is estimated that hybrids are grown on around 85% of the total sunflower planting area today, and the remaining 15% are still landrace varieties, mostly of the confectionery type. Therefore, the requirement for hybrid sunflower seeds in the world today is around 120 million kg (about 12 million bags of 150,000 grains). To reach to this amount, the sunflower will be with an average yield of 700 kg/ha of processed seeds, it is necessary to plant sunflower with area about 170,000 ha. The total commercial hybrid sunflower seed production is estimated at USD 2 billion today. The production of hybrid sunflower seeds today is exposed to many new challenges. Global climate change facilitate warming environmentally, thus make drought and stormy winds occurrence. By monitoring the daily dynamics of bee visits, we determined that the maximum number of visits occurs at air temperatures between 20 and 28℃, and air humidity of 40-50%. In recent years, the average temperature in Serbia has increased by nearly 2℃ compared to the multi-year average. This has a negative effect on the vitality of pollen and fertilization, as well as on the visit of bees, so the recommendations for supplying beehives have increased from 2 to 4/ha. Bees are the most important pollinators for sunflower and on average make up 71% of the total visit (in some years over 90%), the insects is mainly from the Syrfidae family (19% of visits), bumblebees (8%) and butterflies (2%), whose populations are constantly decreasing. Due to the increase in the sunflower planting area, it is increasingly difficult to ensure spatial isolation of insects, it decreases to 500 m in many countries, and this already leads to increased foreign fertilization and the spread of wild sunflowers, which is especially dangerous if they carry some of the genes for resistance to herbicides. In the last 20 years, many herbicides, insecticides and fungicides have lost their registration, especially in Europe. Seed treatment makes sunflower production especially difficult, as well as the international trade of seeds, because the situation differs among different countries. With the announced cancellation of the license for Reglone desiccant, the situation is further aggravated and higher costs can be expected (primarily due to drying), but also a significantly drop in yield and seed quality. The potential substitutes techniques we tried to create (Kabuki, carfentrazone, pelargonic acid, glyphosate...) did not have good results. Problems with high fluctuations in mercantile prices and the increased price  of energy and fertilizers, with a lack of labor and especially with the war in Ukraine, leads the restrictions on seed trade in Russia, significantly affect the sunflower production, thus leading to an increasing risk on the price of sunflower seeds in the future.",
publisher = "International Sunflower Association (ISA)",
journal = "Proceedings, 21st International Sunflower Conference, 20-24 August 2024, Wuyuan, Inner Mongolia, China",
title = "Production of sunflower seed under new climate conditions",
pages = "27-27",
url = "https://hdl.handle.net/21.15107/rcub_fiver_4850"
}
Miklič, V., Dušanić, N., Ostojić, B., Radić, V., Krstić, M., Jokić, G., Butaš, D., Ovuka, J., Balalić, I., Jocić, S., Hladni, N., Marjanović-Jeromela, A., Cvejić, S., Jocković, M., Ćuk, N.,& Miladinović, D.. (2024). Production of sunflower seed under new climate conditions. in Proceedings, 21st International Sunflower Conference, 20-24 August 2024, Wuyuan, Inner Mongolia, China
International Sunflower Association (ISA)., 27-27.
https://hdl.handle.net/21.15107/rcub_fiver_4850
Miklič V, Dušanić N, Ostojić B, Radić V, Krstić M, Jokić G, Butaš D, Ovuka J, Balalić I, Jocić S, Hladni N, Marjanović-Jeromela A, Cvejić S, Jocković M, Ćuk N, Miladinović D. Production of sunflower seed under new climate conditions. in Proceedings, 21st International Sunflower Conference, 20-24 August 2024, Wuyuan, Inner Mongolia, China. 2024;:27-27.
https://hdl.handle.net/21.15107/rcub_fiver_4850 .
Miklič, Vladimir, Dušanić, Nenad, Ostojić, Branislav, Radić, Velimir, Krstić, Miloš, Jokić, Goran, Butaš, Daliborka, Ovuka, Jelena, Balalić, Igor, Jocić, Siniša, Hladni, Nada, Marjanović-Jeromela, Ana, Cvejić, Sandra, Jocković, Milan, Ćuk, Nemanja, Miladinović, Dragana, "Production of sunflower seed under new climate conditions" in Proceedings, 21st International Sunflower Conference, 20-24 August 2024, Wuyuan, Inner Mongolia, China (2024):27-27,
https://hdl.handle.net/21.15107/rcub_fiver_4850 .

Centar izuzetnih vrednosti za inovacije u oplemenjivanju biljaka tolerantnih na promene klime

Miladinović, Dragana; Kondić-Špika, Ankica; Marjanović-Jeromela, Ana; Bekavac, Goran; Tančić-Živanov, Sonja; Cvejić, Sandra; Mikić, Sanja; Radanović, Aleksandra; Dedić, Boško; Gvozdenac, Sonja; Mirosavljević, Milan; Kiprovski, Biljana; Trkulja, Dragana; Ovuka, Jelena; Jocković, Milan; Glogovac, Svetlana; Rajković, Dragana; Takač, Verica; Ćuk, Nemanja; Krstić, Miloš; Jocković, Jelena; Hladni, Nada; Miklič, Vladimir; Jocić, Siniša; Miladinović, Jegor

(Beograd : Društvo genetičara Srbije, 2023)

TY  - CONF
AU  - Miladinović, Dragana
AU  - Kondić-Špika, Ankica
AU  - Marjanović-Jeromela, Ana
AU  - Bekavac, Goran
AU  - Tančić-Živanov, Sonja
AU  - Cvejić, Sandra
AU  - Mikić, Sanja
AU  - Radanović, Aleksandra
AU  - Dedić, Boško
AU  - Gvozdenac, Sonja
AU  - Mirosavljević, Milan
AU  - Kiprovski, Biljana
AU  - Trkulja, Dragana
AU  - Ovuka, Jelena
AU  - Jocković, Milan
AU  - Glogovac, Svetlana
AU  - Rajković, Dragana
AU  - Takač, Verica
AU  - Ćuk, Nemanja
AU  - Krstić, Miloš
AU  - Jocković, Jelena
AU  - Hladni, Nada
AU  - Miklič, Vladimir
AU  - Jocić, Siniša
AU  - Miladinović, Jegor
PY  - 2023
UR  - http://fiver.ifvcns.rs/handle/123456789/4010
AB  - Oplemenjivanje gajenih biljaka je kontinuirani proces usmeren ka povećanju prinosa i poboljšanju njihove otpornosti na biotičke i abiotičke stresove. U novije vreme, česte i često nepredvidive varijacije u klimatskim i tržišnim uslovima su dovele do toga da klasične metode oplemenjivanja ne mogu uvek da obezbede rešenja i blagovremeni odgovor na nove izazove u poljoprivrednoj proizvodnji. Imajući sve ovo u vidu, Institut za ratarstvo i povrtarstvo (IFVCNS) je osnovao Centar izvrsnosti za inovacije u oplemenjivanju biljaka tolerantnih na promene klime – Climate Crops sa ciljem uvođenja i primene novih tehnika oplemenjivanja (NBT), kao i efikasnih platformi za fenotipizaciju u oplemenjivačke programe ratarskih biljaka u IFVCNS. Očekuje se da će aktivnocti u okviru Climate Crops pozitivno uticati na izvrsnost i inovativne kapacitete IFVCNS u oblasti oplemenjivanja biljaka tolerantnih na ekstremne vremenske uslove koji se javljaju kao posledica promene klime.
AB  - Crop breeding is a continuous process aimed at increasing yields and improving crop resistance to biotic and abiotic stresses. Recently, frequent and often unpredictable variations in climatic and market conditions have led to the fact that classical breeding methods cannot always provide solutions and a timely response to new challenges in agricultural production. With all this in mind, the Institute of Field and Vegetable Crops (IFVCNS) established the Centre of Excellence for Innovations in the Breeding of Climate-tolerant Plants - Climate Crops with the aim of introducing and applying new breeding techniques (NBT), along with efficient phenotyping platforms in crop breeding programs in IFVCNS. It is expected that the activities within Climate Crops will have a positive impact on the excellence and innovative capacities of IFVCNS in the field of breeding plants tolerant to the extreme weather conditions that occur as a result of climate change.
PB  - Beograd : Društvo genetičara Srbije
PB  - Beograd : Društvo selekcionera i semenara Republike Srbije
C3  - Zbornik apstrakata, 10. Simpozijum Društva selekcionera i semenara Republike Srbije i 7. Simpozijum sekcije za oplemenjivanje organizama Društva genetičara Srbije, Vrnjačka Banja, 16-18.10.2023.
T1  - Centar izuzetnih vrednosti za inovacije u oplemenjivanju biljaka tolerantnih na promene klime
T1  - Centre of excellence for innovations in breeding of climate-resilient crops
EP  - 164
SP  - 163
UR  - https://hdl.handle.net/21.15107/rcub_fiver_4010
ER  - 
@conference{
author = "Miladinović, Dragana and Kondić-Špika, Ankica and Marjanović-Jeromela, Ana and Bekavac, Goran and Tančić-Živanov, Sonja and Cvejić, Sandra and Mikić, Sanja and Radanović, Aleksandra and Dedić, Boško and Gvozdenac, Sonja and Mirosavljević, Milan and Kiprovski, Biljana and Trkulja, Dragana and Ovuka, Jelena and Jocković, Milan and Glogovac, Svetlana and Rajković, Dragana and Takač, Verica and Ćuk, Nemanja and Krstić, Miloš and Jocković, Jelena and Hladni, Nada and Miklič, Vladimir and Jocić, Siniša and Miladinović, Jegor",
year = "2023",
abstract = "Oplemenjivanje gajenih biljaka je kontinuirani proces usmeren ka povećanju prinosa i poboljšanju njihove otpornosti na biotičke i abiotičke stresove. U novije vreme, česte i često nepredvidive varijacije u klimatskim i tržišnim uslovima su dovele do toga da klasične metode oplemenjivanja ne mogu uvek da obezbede rešenja i blagovremeni odgovor na nove izazove u poljoprivrednoj proizvodnji. Imajući sve ovo u vidu, Institut za ratarstvo i povrtarstvo (IFVCNS) je osnovao Centar izvrsnosti za inovacije u oplemenjivanju biljaka tolerantnih na promene klime – Climate Crops sa ciljem uvođenja i primene novih tehnika oplemenjivanja (NBT), kao i efikasnih platformi za fenotipizaciju u oplemenjivačke programe ratarskih biljaka u IFVCNS. Očekuje se da će aktivnocti u okviru Climate Crops pozitivno uticati na izvrsnost i inovativne kapacitete IFVCNS u oblasti oplemenjivanja biljaka tolerantnih na ekstremne vremenske uslove koji se javljaju kao posledica promene klime., Crop breeding is a continuous process aimed at increasing yields and improving crop resistance to biotic and abiotic stresses. Recently, frequent and often unpredictable variations in climatic and market conditions have led to the fact that classical breeding methods cannot always provide solutions and a timely response to new challenges in agricultural production. With all this in mind, the Institute of Field and Vegetable Crops (IFVCNS) established the Centre of Excellence for Innovations in the Breeding of Climate-tolerant Plants - Climate Crops with the aim of introducing and applying new breeding techniques (NBT), along with efficient phenotyping platforms in crop breeding programs in IFVCNS. It is expected that the activities within Climate Crops will have a positive impact on the excellence and innovative capacities of IFVCNS in the field of breeding plants tolerant to the extreme weather conditions that occur as a result of climate change.",
publisher = "Beograd : Društvo genetičara Srbije, Beograd : Društvo selekcionera i semenara Republike Srbije",
journal = "Zbornik apstrakata, 10. Simpozijum Društva selekcionera i semenara Republike Srbije i 7. Simpozijum sekcije za oplemenjivanje organizama Društva genetičara Srbije, Vrnjačka Banja, 16-18.10.2023.",
title = "Centar izuzetnih vrednosti za inovacije u oplemenjivanju biljaka tolerantnih na promene klime, Centre of excellence for innovations in breeding of climate-resilient crops",
pages = "164-163",
url = "https://hdl.handle.net/21.15107/rcub_fiver_4010"
}
Miladinović, D., Kondić-Špika, A., Marjanović-Jeromela, A., Bekavac, G., Tančić-Živanov, S., Cvejić, S., Mikić, S., Radanović, A., Dedić, B., Gvozdenac, S., Mirosavljević, M., Kiprovski, B., Trkulja, D., Ovuka, J., Jocković, M., Glogovac, S., Rajković, D., Takač, V., Ćuk, N., Krstić, M., Jocković, J., Hladni, N., Miklič, V., Jocić, S.,& Miladinović, J.. (2023). Centar izuzetnih vrednosti za inovacije u oplemenjivanju biljaka tolerantnih na promene klime. in Zbornik apstrakata, 10. Simpozijum Društva selekcionera i semenara Republike Srbije i 7. Simpozijum sekcije za oplemenjivanje organizama Društva genetičara Srbije, Vrnjačka Banja, 16-18.10.2023.
Beograd : Društvo genetičara Srbije., 163-164.
https://hdl.handle.net/21.15107/rcub_fiver_4010
Miladinović D, Kondić-Špika A, Marjanović-Jeromela A, Bekavac G, Tančić-Živanov S, Cvejić S, Mikić S, Radanović A, Dedić B, Gvozdenac S, Mirosavljević M, Kiprovski B, Trkulja D, Ovuka J, Jocković M, Glogovac S, Rajković D, Takač V, Ćuk N, Krstić M, Jocković J, Hladni N, Miklič V, Jocić S, Miladinović J. Centar izuzetnih vrednosti za inovacije u oplemenjivanju biljaka tolerantnih na promene klime. in Zbornik apstrakata, 10. Simpozijum Društva selekcionera i semenara Republike Srbije i 7. Simpozijum sekcije za oplemenjivanje organizama Društva genetičara Srbije, Vrnjačka Banja, 16-18.10.2023.. 2023;:163-164.
https://hdl.handle.net/21.15107/rcub_fiver_4010 .
Miladinović, Dragana, Kondić-Špika, Ankica, Marjanović-Jeromela, Ana, Bekavac, Goran, Tančić-Živanov, Sonja, Cvejić, Sandra, Mikić, Sanja, Radanović, Aleksandra, Dedić, Boško, Gvozdenac, Sonja, Mirosavljević, Milan, Kiprovski, Biljana, Trkulja, Dragana, Ovuka, Jelena, Jocković, Milan, Glogovac, Svetlana, Rajković, Dragana, Takač, Verica, Ćuk, Nemanja, Krstić, Miloš, Jocković, Jelena, Hladni, Nada, Miklič, Vladimir, Jocić, Siniša, Miladinović, Jegor, "Centar izuzetnih vrednosti za inovacije u oplemenjivanju biljaka tolerantnih na promene klime" in Zbornik apstrakata, 10. Simpozijum Društva selekcionera i semenara Republike Srbije i 7. Simpozijum sekcije za oplemenjivanje organizama Društva genetičara Srbije, Vrnjačka Banja, 16-18.10.2023. (2023):163-164,
https://hdl.handle.net/21.15107/rcub_fiver_4010 .