Climate Crops - Centre of Excellence for Innovations in Breeding of Climate-Resilient Crops, Institute of Field and Vegetable Crops

Link to this page

Climate Crops - Centre of Excellence for Innovations in Breeding of Climate-Resilient Crops, Institute of Field and Vegetable Crops

Authors

Publications

Suncokret i promena klime - novi pristupi stvaranju tolerantnih hibrida

Miladinović, Dragana; Kondić-Špika, Ankica; Babec, Brankica; Bekavac, Goran; Cvejić, Sandra; Ćeran, Marina; Ćuk, Nemanja; Dedić, Boško; Đorđević, Vuk; Jocić, Siniša; Jocković, Jelena; Jocković, Milan; Glogovac, Svetlana; Gvozdenac, Sonja; Hladni, Nada; Kiprovski, Biljana; Krstić, Miloš; Marjanović-Jeromela, Ana; Mikić, Sanja; Miklič, Vladimir; Milovac, Željko; Mirosavljević, Milan; Ovuka, Jelena; Radanović, Aleksandra; Rajković, Dragana; Tančić-Živanov, Sonja; Trkulja, Dragana; Zelić, Verica; Zeremski, Tijana; Miladinović, Jegor

(Novi Sad : Univerzitet u Novom Sadu, Tehnološki fakultet, 2024)

TY  - CONF
AU  - Miladinović, Dragana
AU  - Kondić-Špika, Ankica
AU  - Babec, Brankica
AU  - Bekavac, Goran
AU  - Cvejić, Sandra
AU  - Ćeran, Marina
AU  - Ćuk, Nemanja
AU  - Dedić, Boško
AU  - Đorđević, Vuk
AU  - Jocić, Siniša
AU  - Jocković, Jelena
AU  - Jocković, Milan
AU  - Glogovac, Svetlana
AU  - Gvozdenac, Sonja
AU  - Hladni, Nada
AU  - Kiprovski, Biljana
AU  - Krstić, Miloš
AU  - Marjanović-Jeromela, Ana
AU  - Mikić, Sanja
AU  - Miklič, Vladimir
AU  - Milovac, Željko
AU  - Mirosavljević, Milan
AU  - Ovuka, Jelena
AU  - Radanović, Aleksandra
AU  - Rajković, Dragana
AU  - Tančić-Živanov, Sonja
AU  - Trkulja, Dragana
AU  - Zelić, Verica
AU  - Zeremski, Tijana
AU  - Miladinović, Jegor
PY  - 2024
UR  - http://fiver.ifvcns.rs/handle/123456789/4706
AB  - Oplemenjivanje suncokreta je kontinuirani proces dizajniran da poveća nivo prinosa i poboljša otpornost na biotičke i abiotičke stresove. Oplemenjivači su bili uspešni u proizvodnji velikog broja sorti koristeći konvencionalne metode oplemenjivanja koje se razlikuju u zavisnosti od vrste. Pojava novih tehnika, kao što je genomska selekcija i izmena genoma, zajedno sa efikasnim platformama za fenotipizaciju, utrle su put efikasnijem unošenju poželjnih osobina. Novi pristupi u genotipizaciji i fenotipizaciji omogućili su efikasnije prikupljanje podataka za identifikaciju kvantitativnih svojstava i objašnjenje genetske osnove agronomski važnih osobina. Stvaranje genotipova suncokreta otpornih na promene klime može doprineti ublažavanju negativnog uticaja koje poljoprivredna proizvodnja ima na životnu sredinu, poput intenzivnog iskorišćavanja voda i emisije gasova staklene bašte, dok s druge strane obezbeđuje resurse za stabilnu poljoprivrednu proizvodnju. U radu je dat pregled novih pristupa i koraka u oplemenjivanju suncokreta i stvaranju genotipova tolerantnih na promene klime, uz osvrt na aktivnosti u Institutu za ratarstvo i povrtarstvo vezane za njihovu primenu u NS oplemenjivačkom programu.
AB  - Sunflower breeding is a continuous process designed to increase yield levels and improve resistance to biotic and abiotic stresses. Breeders have been successful in producing a large number of varieties using conventional breeding methods that vary by species. The emergence of new techniques, such as genomic selection and genome editing, together with efficient phenotyping platforms, have paved the way for more efficient introduction of desirable traits. New approaches in genotyping and phenotyping have enabled more efficient data collection to identify quantitative traits and explain the genetic basis of agronomically important traits. The creation of sunflower genotypes resistant to climate change can contribute to mitigating the negative impact that agricultural production has on the environment, such as intensive water depletion and greenhouse gas emissions, while on the other hand providing resources for stable agricultural production. The paper provides an overview of new approaches and steps in sunflower breeding and the creation of genotypes tolerant to climate changes, with a review of the activities at the Institute of Field and Vegetable Crops related to their application in the NS breeding program.
PB  - Novi Sad : Univerzitet u Novom Sadu, Tehnološki fakultet
PB  - Novi Sad : Institut za ratarstvo i povrtarstvo
PB  - Novi Sad : Industrijsko bilje
C3  - Zbornik radova, 65. Savetovanje industrije ulja Proizvodnja i prerada uljarica, Herceg Novi, 23-28. jun 2024.
T1  - Suncokret i promena klime - novi pristupi stvaranju tolerantnih hibrida
T1  - Sunflower and climate change - new approaches in creation of resilient hybrids
EP  - 21
SP  - 16
UR  - https://hdl.handle.net/21.15107/rcub_fiver_4706
ER  - 
@conference{
author = "Miladinović, Dragana and Kondić-Špika, Ankica and Babec, Brankica and Bekavac, Goran and Cvejić, Sandra and Ćeran, Marina and Ćuk, Nemanja and Dedić, Boško and Đorđević, Vuk and Jocić, Siniša and Jocković, Jelena and Jocković, Milan and Glogovac, Svetlana and Gvozdenac, Sonja and Hladni, Nada and Kiprovski, Biljana and Krstić, Miloš and Marjanović-Jeromela, Ana and Mikić, Sanja and Miklič, Vladimir and Milovac, Željko and Mirosavljević, Milan and Ovuka, Jelena and Radanović, Aleksandra and Rajković, Dragana and Tančić-Živanov, Sonja and Trkulja, Dragana and Zelić, Verica and Zeremski, Tijana and Miladinović, Jegor",
year = "2024",
abstract = "Oplemenjivanje suncokreta je kontinuirani proces dizajniran da poveća nivo prinosa i poboljša otpornost na biotičke i abiotičke stresove. Oplemenjivači su bili uspešni u proizvodnji velikog broja sorti koristeći konvencionalne metode oplemenjivanja koje se razlikuju u zavisnosti od vrste. Pojava novih tehnika, kao što je genomska selekcija i izmena genoma, zajedno sa efikasnim platformama za fenotipizaciju, utrle su put efikasnijem unošenju poželjnih osobina. Novi pristupi u genotipizaciji i fenotipizaciji omogućili su efikasnije prikupljanje podataka za identifikaciju kvantitativnih svojstava i objašnjenje genetske osnove agronomski važnih osobina. Stvaranje genotipova suncokreta otpornih na promene klime može doprineti ublažavanju negativnog uticaja koje poljoprivredna proizvodnja ima na životnu sredinu, poput intenzivnog iskorišćavanja voda i emisije gasova staklene bašte, dok s druge strane obezbeđuje resurse za stabilnu poljoprivrednu proizvodnju. U radu je dat pregled novih pristupa i koraka u oplemenjivanju suncokreta i stvaranju genotipova tolerantnih na promene klime, uz osvrt na aktivnosti u Institutu za ratarstvo i povrtarstvo vezane za njihovu primenu u NS oplemenjivačkom programu., Sunflower breeding is a continuous process designed to increase yield levels and improve resistance to biotic and abiotic stresses. Breeders have been successful in producing a large number of varieties using conventional breeding methods that vary by species. The emergence of new techniques, such as genomic selection and genome editing, together with efficient phenotyping platforms, have paved the way for more efficient introduction of desirable traits. New approaches in genotyping and phenotyping have enabled more efficient data collection to identify quantitative traits and explain the genetic basis of agronomically important traits. The creation of sunflower genotypes resistant to climate change can contribute to mitigating the negative impact that agricultural production has on the environment, such as intensive water depletion and greenhouse gas emissions, while on the other hand providing resources for stable agricultural production. The paper provides an overview of new approaches and steps in sunflower breeding and the creation of genotypes tolerant to climate changes, with a review of the activities at the Institute of Field and Vegetable Crops related to their application in the NS breeding program.",
publisher = "Novi Sad : Univerzitet u Novom Sadu, Tehnološki fakultet, Novi Sad : Institut za ratarstvo i povrtarstvo, Novi Sad : Industrijsko bilje",
journal = "Zbornik radova, 65. Savetovanje industrije ulja Proizvodnja i prerada uljarica, Herceg Novi, 23-28. jun 2024.",
title = "Suncokret i promena klime - novi pristupi stvaranju tolerantnih hibrida, Sunflower and climate change - new approaches in creation of resilient hybrids",
pages = "21-16",
url = "https://hdl.handle.net/21.15107/rcub_fiver_4706"
}
Miladinović, D., Kondić-Špika, A., Babec, B., Bekavac, G., Cvejić, S., Ćeran, M., Ćuk, N., Dedić, B., Đorđević, V., Jocić, S., Jocković, J., Jocković, M., Glogovac, S., Gvozdenac, S., Hladni, N., Kiprovski, B., Krstić, M., Marjanović-Jeromela, A., Mikić, S., Miklič, V., Milovac, Ž., Mirosavljević, M., Ovuka, J., Radanović, A., Rajković, D., Tančić-Živanov, S., Trkulja, D., Zelić, V., Zeremski, T.,& Miladinović, J.. (2024). Suncokret i promena klime - novi pristupi stvaranju tolerantnih hibrida. in Zbornik radova, 65. Savetovanje industrije ulja Proizvodnja i prerada uljarica, Herceg Novi, 23-28. jun 2024.
Novi Sad : Univerzitet u Novom Sadu, Tehnološki fakultet., 16-21.
https://hdl.handle.net/21.15107/rcub_fiver_4706
Miladinović D, Kondić-Špika A, Babec B, Bekavac G, Cvejić S, Ćeran M, Ćuk N, Dedić B, Đorđević V, Jocić S, Jocković J, Jocković M, Glogovac S, Gvozdenac S, Hladni N, Kiprovski B, Krstić M, Marjanović-Jeromela A, Mikić S, Miklič V, Milovac Ž, Mirosavljević M, Ovuka J, Radanović A, Rajković D, Tančić-Živanov S, Trkulja D, Zelić V, Zeremski T, Miladinović J. Suncokret i promena klime - novi pristupi stvaranju tolerantnih hibrida. in Zbornik radova, 65. Savetovanje industrije ulja Proizvodnja i prerada uljarica, Herceg Novi, 23-28. jun 2024.. 2024;:16-21.
https://hdl.handle.net/21.15107/rcub_fiver_4706 .
Miladinović, Dragana, Kondić-Špika, Ankica, Babec, Brankica, Bekavac, Goran, Cvejić, Sandra, Ćeran, Marina, Ćuk, Nemanja, Dedić, Boško, Đorđević, Vuk, Jocić, Siniša, Jocković, Jelena, Jocković, Milan, Glogovac, Svetlana, Gvozdenac, Sonja, Hladni, Nada, Kiprovski, Biljana, Krstić, Miloš, Marjanović-Jeromela, Ana, Mikić, Sanja, Miklič, Vladimir, Milovac, Željko, Mirosavljević, Milan, Ovuka, Jelena, Radanović, Aleksandra, Rajković, Dragana, Tančić-Živanov, Sonja, Trkulja, Dragana, Zelić, Verica, Zeremski, Tijana, Miladinović, Jegor, "Suncokret i promena klime - novi pristupi stvaranju tolerantnih hibrida" in Zbornik radova, 65. Savetovanje industrije ulja Proizvodnja i prerada uljarica, Herceg Novi, 23-28. jun 2024. (2024):16-21,
https://hdl.handle.net/21.15107/rcub_fiver_4706 .

Adaptabilnost, stabilnost i visok prinos - NS hibridi suncokreta nove generacije za nove izazove

Krstić, Miloš; Babec, Brankica; Ćuk, Nemanja; Jocić, Siniša; Cvejić, Sandra; Ovuka, Jelena; Miladinović, Dragana; Jocković, Milan; Jocković, Jelena; Hladni, Nada; Grahovac, Nada; Dušanić, Nenad; Radić, Velimir; Balalić, Igor; Gvozdenac, Sonja; Dedić, Boško; Ostojić, Branislav; Jokić, Goran; Butaš, Daliborka; Radeka, Ilija; Klisurić, Nedjeljko; Miklič, Vladimir

(Novi Sad : Institut za ratarstvo i povrtarstvo, 2024)

TY  - CONF
AU  - Krstić, Miloš
AU  - Babec, Brankica
AU  - Ćuk, Nemanja
AU  - Jocić, Siniša
AU  - Cvejić, Sandra
AU  - Ovuka, Jelena
AU  - Miladinović, Dragana
AU  - Jocković, Milan
AU  - Jocković, Jelena
AU  - Hladni, Nada
AU  - Grahovac, Nada
AU  - Dušanić, Nenad
AU  - Radić, Velimir
AU  - Balalić, Igor
AU  - Gvozdenac, Sonja
AU  - Dedić, Boško
AU  - Ostojić, Branislav
AU  - Jokić, Goran
AU  - Butaš, Daliborka
AU  - Radeka, Ilija
AU  - Klisurić, Nedjeljko
AU  - Miklič, Vladimir
PY  - 2024
UR  - http://fiver.ifvcns.rs/handle/123456789/4238
AB  - Suncokret je sve više ižložen negativnim uticajima klimatskih promena, posebno visokim
temperaturama i sušnim periodima, što neretko uzrokuje značajne varijacije i smanjenje prinosa
semena. S obzirom na to da se klimatske promene ne mogu zaustaviti, neophodno je
identifikovati promene u biljci koje omogućavaju prilagođavanje na ekstremne klimatske uslove i
primeniti ova saznanja u procesu oplemenjivanja. Stvaranje novih genotipova tolerantnih na sušu
i sve vrste stresa je prioritet u sadašnjem ali i budućem procesu oplemenjivanja biljaka.
Postizanje ovog cilja zahteva ispitivanje performanši hibrida na više lokaliteta i u ražlićitim
godinama, osiguravajuć i tako pouzdane rezultate i prilagodljivost u promenljivim okolnostima.
Institut za ratarstvo i povrtarstvo, Institut od nacionalnog značaja za Republiku Srbiju, Novi Sad
sprovodi svake godine multilokacijske mikro i proizvodne ogleda širom zemlje, testirajući
adaptabilnost i stabilnost novih i već raširenih hibrida suncokreta u različitim mikroklimatskim
uslovima. Tokom 2023. godine hibridi nove generacije, odnosno dva konvencionalna hibrida (NS
Kruna i NS Ronin) i dva Express (SUMO) hibrida (NS H 8002 i NS H 8005) posejani su u osam
regiona tj. okruga, kod četiri poljoprivredna proizvođača a u svakom okrugu. Imajući u vidu da je u
2023. godini, prosečan prinos semena suncokreta u Republici Srbiji prema procenama iznošio 2,7
-2,9 t/ha, a kada uporedimo ovu vrednost sa prosečnim prinosima u mreži proizvodnih ogleda
osam okruga, jasno se ističe visok kvalitet NS hibrida suncokreta nove generacije. NS Ronin je
ostvario izuzetan prinos od 4,2 t/ha, prati ga NS Kruna sa 4 t/ha, dok su SUMO hibridi NS H 8002
i NS H 8005 postigli prinose od 3,7 t/ha i 3,8 t/ha. Rezultati AMMI analize pokazuju da je za
prinos semena tokom 2023. godine u proseku kroz sve okruge najstabilniji bio hibrid NS H 8002,
sa vrednosć u IPC1 najblizoj nuli. Hibridi NS Kruna, NS Ronin i NS H 8005 su pokazali manju
stabilnost, jer su bili udaljeniji od linije stabilnosti u odnosu na hibrid NS H 8002, ali su ovi
hibridi u proseku ostvarili veće prinose u svim okruzima. Ovi rezultati potvrđuju da novosadski
hibridi nove generacije poseduju izuzetnu adaptabilnost, stabilnost, a pored toga i visok
potencijal za prinos u različitim agroekološkim uslovima širom Republike Srbije.
PB  - Novi Sad : Institut za ratarstvo i povrtarstvo
C3  - Zbornik referata, 58. Savetovanje agronoma i poljoprivrednika Srbije (SAPS) i 4. Savetovanje agronoma Srbije i Republike Srpske, Zlatibor, 29. januar - 2. februar 2024.
T1  - Adaptabilnost, stabilnost i visok prinos - NS hibridi suncokreta nove generacije za nove izazove
EP  - 32
SP  - 24
DO  - 10.5937/SAPS24003K
UR  - https://hdl.handle.net/21.15107/rcub_fiver_4238
ER  - 
@conference{
author = "Krstić, Miloš and Babec, Brankica and Ćuk, Nemanja and Jocić, Siniša and Cvejić, Sandra and Ovuka, Jelena and Miladinović, Dragana and Jocković, Milan and Jocković, Jelena and Hladni, Nada and Grahovac, Nada and Dušanić, Nenad and Radić, Velimir and Balalić, Igor and Gvozdenac, Sonja and Dedić, Boško and Ostojić, Branislav and Jokić, Goran and Butaš, Daliborka and Radeka, Ilija and Klisurić, Nedjeljko and Miklič, Vladimir",
year = "2024",
abstract = "Suncokret je sve više ižložen negativnim uticajima klimatskih promena, posebno visokim
temperaturama i sušnim periodima, što neretko uzrokuje značajne varijacije i smanjenje prinosa
semena. S obzirom na to da se klimatske promene ne mogu zaustaviti, neophodno je
identifikovati promene u biljci koje omogućavaju prilagođavanje na ekstremne klimatske uslove i
primeniti ova saznanja u procesu oplemenjivanja. Stvaranje novih genotipova tolerantnih na sušu
i sve vrste stresa je prioritet u sadašnjem ali i budućem procesu oplemenjivanja biljaka.
Postizanje ovog cilja zahteva ispitivanje performanši hibrida na više lokaliteta i u ražlićitim
godinama, osiguravajuć i tako pouzdane rezultate i prilagodljivost u promenljivim okolnostima.
Institut za ratarstvo i povrtarstvo, Institut od nacionalnog značaja za Republiku Srbiju, Novi Sad
sprovodi svake godine multilokacijske mikro i proizvodne ogleda širom zemlje, testirajući
adaptabilnost i stabilnost novih i već raširenih hibrida suncokreta u različitim mikroklimatskim
uslovima. Tokom 2023. godine hibridi nove generacije, odnosno dva konvencionalna hibrida (NS
Kruna i NS Ronin) i dva Express (SUMO) hibrida (NS H 8002 i NS H 8005) posejani su u osam
regiona tj. okruga, kod četiri poljoprivredna proizvođača a u svakom okrugu. Imajući u vidu da je u
2023. godini, prosečan prinos semena suncokreta u Republici Srbiji prema procenama iznošio 2,7
-2,9 t/ha, a kada uporedimo ovu vrednost sa prosečnim prinosima u mreži proizvodnih ogleda
osam okruga, jasno se ističe visok kvalitet NS hibrida suncokreta nove generacije. NS Ronin je
ostvario izuzetan prinos od 4,2 t/ha, prati ga NS Kruna sa 4 t/ha, dok su SUMO hibridi NS H 8002
i NS H 8005 postigli prinose od 3,7 t/ha i 3,8 t/ha. Rezultati AMMI analize pokazuju da je za
prinos semena tokom 2023. godine u proseku kroz sve okruge najstabilniji bio hibrid NS H 8002,
sa vrednosć u IPC1 najblizoj nuli. Hibridi NS Kruna, NS Ronin i NS H 8005 su pokazali manju
stabilnost, jer su bili udaljeniji od linije stabilnosti u odnosu na hibrid NS H 8002, ali su ovi
hibridi u proseku ostvarili veće prinose u svim okruzima. Ovi rezultati potvrđuju da novosadski
hibridi nove generacije poseduju izuzetnu adaptabilnost, stabilnost, a pored toga i visok
potencijal za prinos u različitim agroekološkim uslovima širom Republike Srbije.",
publisher = "Novi Sad : Institut za ratarstvo i povrtarstvo",
journal = "Zbornik referata, 58. Savetovanje agronoma i poljoprivrednika Srbije (SAPS) i 4. Savetovanje agronoma Srbije i Republike Srpske, Zlatibor, 29. januar - 2. februar 2024.",
title = "Adaptabilnost, stabilnost i visok prinos - NS hibridi suncokreta nove generacije za nove izazove",
pages = "32-24",
doi = "10.5937/SAPS24003K",
url = "https://hdl.handle.net/21.15107/rcub_fiver_4238"
}
Krstić, M., Babec, B., Ćuk, N., Jocić, S., Cvejić, S., Ovuka, J., Miladinović, D., Jocković, M., Jocković, J., Hladni, N., Grahovac, N., Dušanić, N., Radić, V., Balalić, I., Gvozdenac, S., Dedić, B., Ostojić, B., Jokić, G., Butaš, D., Radeka, I., Klisurić, N.,& Miklič, V.. (2024). Adaptabilnost, stabilnost i visok prinos - NS hibridi suncokreta nove generacije za nove izazove. in Zbornik referata, 58. Savetovanje agronoma i poljoprivrednika Srbije (SAPS) i 4. Savetovanje agronoma Srbije i Republike Srpske, Zlatibor, 29. januar - 2. februar 2024.
Novi Sad : Institut za ratarstvo i povrtarstvo., 24-32.
https://doi.org/10.5937/SAPS24003K
https://hdl.handle.net/21.15107/rcub_fiver_4238
Krstić M, Babec B, Ćuk N, Jocić S, Cvejić S, Ovuka J, Miladinović D, Jocković M, Jocković J, Hladni N, Grahovac N, Dušanić N, Radić V, Balalić I, Gvozdenac S, Dedić B, Ostojić B, Jokić G, Butaš D, Radeka I, Klisurić N, Miklič V. Adaptabilnost, stabilnost i visok prinos - NS hibridi suncokreta nove generacije za nove izazove. in Zbornik referata, 58. Savetovanje agronoma i poljoprivrednika Srbije (SAPS) i 4. Savetovanje agronoma Srbije i Republike Srpske, Zlatibor, 29. januar - 2. februar 2024.. 2024;:24-32.
doi:10.5937/SAPS24003K
https://hdl.handle.net/21.15107/rcub_fiver_4238 .
Krstić, Miloš, Babec, Brankica, Ćuk, Nemanja, Jocić, Siniša, Cvejić, Sandra, Ovuka, Jelena, Miladinović, Dragana, Jocković, Milan, Jocković, Jelena, Hladni, Nada, Grahovac, Nada, Dušanić, Nenad, Radić, Velimir, Balalić, Igor, Gvozdenac, Sonja, Dedić, Boško, Ostojić, Branislav, Jokić, Goran, Butaš, Daliborka, Radeka, Ilija, Klisurić, Nedjeljko, Miklič, Vladimir, "Adaptabilnost, stabilnost i visok prinos - NS hibridi suncokreta nove generacije za nove izazove" in Zbornik referata, 58. Savetovanje agronoma i poljoprivrednika Srbije (SAPS) i 4. Savetovanje agronoma Srbije i Republike Srpske, Zlatibor, 29. januar - 2. februar 2024. (2024):24-32,
https://doi.org/10.5937/SAPS24003K .,
https://hdl.handle.net/21.15107/rcub_fiver_4238 .

Advances in sunflower breeding to increase oil content and drought resistance

Miklič, Vladimir; Jocković, Milan; Jocić, Siniša; Cvejić, Sandra; Ćuk, Nemanja; Jocković, Jelena; Radanović, Aleksandra; Marjanović-Jeromela, Ana; Miladinović, Dragana; Grahovac, Nada

(International Sunflower Association (ISA), 2024)

TY  - CONF
AU  - Miklič, Vladimir
AU  - Jocković, Milan
AU  - Jocić, Siniša
AU  - Cvejić, Sandra
AU  - Ćuk, Nemanja
AU  - Jocković, Jelena
AU  - Radanović, Aleksandra
AU  - Marjanović-Jeromela, Ana
AU  - Miladinović, Dragana
AU  - Grahovac, Nada
PY  - 2024
UR  - http://fiver.ifvcns.rs/handle/123456789/4852
AB  - Sunflower is a globally important oilseed crop mainly used for oil in human consumption, while secondary products have nutritional value in livestock feed. Neverthless there have been advancements in breeding sunflower genotypes with desirable traits, high yield, and disease resistance, further research is needed to address emerging challenges, such as climate resilience and sustainability. Bearing in mind that sunflower breeding over the last several decades has mainly foucused on biotic and abiotic resilience, sunflower oil content in hybrids has remained at the same level, 40-50%. Considering the trends of climate change, drought tolerance certainly represents an essential trait in breeding programs worldwide. The question arises whether it is time to further orient in sunflower breeding towards increasing oil content, bearing in mind that in light of increasingly frequent dry years. It is very difficult to make progress in seed yield. The aim of our study was to develop sunflower genotypes characterized by drought tolerance and increased oil content (>55%). Initial plant material was selected from a gene pool of the Institute of Field and Vegetable Crops, Novi Sad. We used a traditional approach by crossing highly drought tolerant inbred lines characterized by oil content ranging from 50-52%. Genetic material for drought tolerance was selected based on field trials and in vitro drought conditions, over six vegetations (3 vegetations in field conditions and 3 vegetations in in vitro conditions). Oil content was determined using nuclear magnetic resonance analyzer (NMR, Maran Ultra-10). The pedigree method of selection was used to develop new genetic material with desirable traits. As a result, we developed seven inbred lines designated as DO1 to DO7 characterized by high drought tolerance and high oil content ranging from 55.09% to 60.39%. Our results revealed that there is a possibility for significant improvement in sunflower oil content while simultaneously breeding for drought resistant. Further studies will include biotechnological tools in order to identify QTLs associated with drought tolerance and increased oil content and to develop markers associated with traits of interest in order to accelerate the breeding process.
PB  - International Sunflower Association (ISA)
C3  - Proceedings, 21st International Sunflower Conference, 20-24 August 2024, Wuyuan, China
T1  - Advances in sunflower breeding to increase oil content and drought resistance
EP  - 9
SP  - 9
UR  - https://hdl.handle.net/21.15107/rcub_fiver_4852
ER  - 
@conference{
author = "Miklič, Vladimir and Jocković, Milan and Jocić, Siniša and Cvejić, Sandra and Ćuk, Nemanja and Jocković, Jelena and Radanović, Aleksandra and Marjanović-Jeromela, Ana and Miladinović, Dragana and Grahovac, Nada",
year = "2024",
abstract = "Sunflower is a globally important oilseed crop mainly used for oil in human consumption, while secondary products have nutritional value in livestock feed. Neverthless there have been advancements in breeding sunflower genotypes with desirable traits, high yield, and disease resistance, further research is needed to address emerging challenges, such as climate resilience and sustainability. Bearing in mind that sunflower breeding over the last several decades has mainly foucused on biotic and abiotic resilience, sunflower oil content in hybrids has remained at the same level, 40-50%. Considering the trends of climate change, drought tolerance certainly represents an essential trait in breeding programs worldwide. The question arises whether it is time to further orient in sunflower breeding towards increasing oil content, bearing in mind that in light of increasingly frequent dry years. It is very difficult to make progress in seed yield. The aim of our study was to develop sunflower genotypes characterized by drought tolerance and increased oil content (>55%). Initial plant material was selected from a gene pool of the Institute of Field and Vegetable Crops, Novi Sad. We used a traditional approach by crossing highly drought tolerant inbred lines characterized by oil content ranging from 50-52%. Genetic material for drought tolerance was selected based on field trials and in vitro drought conditions, over six vegetations (3 vegetations in field conditions and 3 vegetations in in vitro conditions). Oil content was determined using nuclear magnetic resonance analyzer (NMR, Maran Ultra-10). The pedigree method of selection was used to develop new genetic material with desirable traits. As a result, we developed seven inbred lines designated as DO1 to DO7 characterized by high drought tolerance and high oil content ranging from 55.09% to 60.39%. Our results revealed that there is a possibility for significant improvement in sunflower oil content while simultaneously breeding for drought resistant. Further studies will include biotechnological tools in order to identify QTLs associated with drought tolerance and increased oil content and to develop markers associated with traits of interest in order to accelerate the breeding process.",
publisher = "International Sunflower Association (ISA)",
journal = "Proceedings, 21st International Sunflower Conference, 20-24 August 2024, Wuyuan, China",
title = "Advances in sunflower breeding to increase oil content and drought resistance",
pages = "9-9",
url = "https://hdl.handle.net/21.15107/rcub_fiver_4852"
}
Miklič, V., Jocković, M., Jocić, S., Cvejić, S., Ćuk, N., Jocković, J., Radanović, A., Marjanović-Jeromela, A., Miladinović, D.,& Grahovac, N.. (2024). Advances in sunflower breeding to increase oil content and drought resistance. in Proceedings, 21st International Sunflower Conference, 20-24 August 2024, Wuyuan, China
International Sunflower Association (ISA)., 9-9.
https://hdl.handle.net/21.15107/rcub_fiver_4852
Miklič V, Jocković M, Jocić S, Cvejić S, Ćuk N, Jocković J, Radanović A, Marjanović-Jeromela A, Miladinović D, Grahovac N. Advances in sunflower breeding to increase oil content and drought resistance. in Proceedings, 21st International Sunflower Conference, 20-24 August 2024, Wuyuan, China. 2024;:9-9.
https://hdl.handle.net/21.15107/rcub_fiver_4852 .
Miklič, Vladimir, Jocković, Milan, Jocić, Siniša, Cvejić, Sandra, Ćuk, Nemanja, Jocković, Jelena, Radanović, Aleksandra, Marjanović-Jeromela, Ana, Miladinović, Dragana, Grahovac, Nada, "Advances in sunflower breeding to increase oil content and drought resistance" in Proceedings, 21st International Sunflower Conference, 20-24 August 2024, Wuyuan, China (2024):9-9,
https://hdl.handle.net/21.15107/rcub_fiver_4852 .

Unravelling mechanisms of drought tolerance and stress recovery in sunflower

Radanović, Aleksandra; Cvejić, Sandra; Dedic, Bosko; Jocković, Milan; Bursać, Srđan; Ćuk, Nemanja; Jocković, Jelena; Jocić, Siniša; Miladinović, Dragana

(International Sunflower Association (ISA), 2024)

TY  - CONF
AU  - Radanović, Aleksandra
AU  - Cvejić, Sandra
AU  - Dedic, Bosko
AU  - Jocković, Milan
AU  - Bursać, Srđan
AU  - Ćuk, Nemanja
AU  - Jocković, Jelena
AU  - Jocić, Siniša
AU  - Miladinović, Dragana
PY  - 2024
UR  - http://fiver.ifvcns.rs/handle/123456789/4856
AB  - Drought is a global threat to food security and is a major abiotic factor limiting
crop production. Enhancing drought tolerance in crops is therefore a critical goal in breeding
programs worldwide. Despite being considered a moderately drought-tolerant crop,
sunflower’s production is still affected by drought. Drought tolerance is a complex trait, that
triggers numerous responses at morphological, physiological and molecular levels. Hence, a
comprehensive approach is needed to decipher the underlying mechanisms in sunflower.
At the Institute of Field and Vegetable Crops (IFVCNS), we have created a broad sunflower
panel of nearly 50 IFVCNS inbred lines, that were tested under in vitro conditions. Through
comprehensive phenotyping, we identify traits associated with drought tolerance. The most
drought-tolerant and sensitive genotypes were identified and subjected to further testing in pot
experiments to validate the in vitro results and to examine sunflower responses to drought
stress at later development stages on transcriptomic and epigenetic levels. Additionally, the
recovery capacity of the genotypes is being examined. Current efforts are focused on
determine the key mechanisms involved in drought tolerance by analyzing gene expression,
transcriptome and epigenome variations. The goal of this research is to identify stable
drought-induced transcriptomic and epigenetic variations, as well as target genes and
epiQTLs, that can be used in marker-assisted breeding.
PB  - International Sunflower Association (ISA)
C3  - Proceedings, 21st International Sunflower Conference, 20-24 August 2024, Wuyuan, China
T1  - Unravelling mechanisms of drought tolerance and stress recovery in sunflower
EP  - 77
SP  - 77
UR  - https://hdl.handle.net/21.15107/rcub_fiver_4856
ER  - 
@conference{
author = "Radanović, Aleksandra and Cvejić, Sandra and Dedic, Bosko and Jocković, Milan and Bursać, Srđan and Ćuk, Nemanja and Jocković, Jelena and Jocić, Siniša and Miladinović, Dragana",
year = "2024",
abstract = "Drought is a global threat to food security and is a major abiotic factor limiting
crop production. Enhancing drought tolerance in crops is therefore a critical goal in breeding
programs worldwide. Despite being considered a moderately drought-tolerant crop,
sunflower’s production is still affected by drought. Drought tolerance is a complex trait, that
triggers numerous responses at morphological, physiological and molecular levels. Hence, a
comprehensive approach is needed to decipher the underlying mechanisms in sunflower.
At the Institute of Field and Vegetable Crops (IFVCNS), we have created a broad sunflower
panel of nearly 50 IFVCNS inbred lines, that were tested under in vitro conditions. Through
comprehensive phenotyping, we identify traits associated with drought tolerance. The most
drought-tolerant and sensitive genotypes were identified and subjected to further testing in pot
experiments to validate the in vitro results and to examine sunflower responses to drought
stress at later development stages on transcriptomic and epigenetic levels. Additionally, the
recovery capacity of the genotypes is being examined. Current efforts are focused on
determine the key mechanisms involved in drought tolerance by analyzing gene expression,
transcriptome and epigenome variations. The goal of this research is to identify stable
drought-induced transcriptomic and epigenetic variations, as well as target genes and
epiQTLs, that can be used in marker-assisted breeding.",
publisher = "International Sunflower Association (ISA)",
journal = "Proceedings, 21st International Sunflower Conference, 20-24 August 2024, Wuyuan, China",
title = "Unravelling mechanisms of drought tolerance and stress recovery in sunflower",
pages = "77-77",
url = "https://hdl.handle.net/21.15107/rcub_fiver_4856"
}
Radanović, A., Cvejić, S., Dedic, B., Jocković, M., Bursać, S., Ćuk, N., Jocković, J., Jocić, S.,& Miladinović, D.. (2024). Unravelling mechanisms of drought tolerance and stress recovery in sunflower. in Proceedings, 21st International Sunflower Conference, 20-24 August 2024, Wuyuan, China
International Sunflower Association (ISA)., 77-77.
https://hdl.handle.net/21.15107/rcub_fiver_4856
Radanović A, Cvejić S, Dedic B, Jocković M, Bursać S, Ćuk N, Jocković J, Jocić S, Miladinović D. Unravelling mechanisms of drought tolerance and stress recovery in sunflower. in Proceedings, 21st International Sunflower Conference, 20-24 August 2024, Wuyuan, China. 2024;:77-77.
https://hdl.handle.net/21.15107/rcub_fiver_4856 .
Radanović, Aleksandra, Cvejić, Sandra, Dedic, Bosko, Jocković, Milan, Bursać, Srđan, Ćuk, Nemanja, Jocković, Jelena, Jocić, Siniša, Miladinović, Dragana, "Unravelling mechanisms of drought tolerance and stress recovery in sunflower" in Proceedings, 21st International Sunflower Conference, 20-24 August 2024, Wuyuan, China (2024):77-77,
https://hdl.handle.net/21.15107/rcub_fiver_4856 .

Secretory Tissues and Volatile Components of Disc Florets in Several Wild Helianthus L. Species

Jocković, Jelena; Rajčević, Nemanja; Zorić, Lana; Jocković, Milan; Radanović, Aleksandra; Cvejić, Sandra; Jocić, Siniša; Vujisić, Ljubodrag; Miladinović, Dragana; Miklič, Vladimir; Luković, Jadranka

(Basel : MDPI, 2024)

TY  - JOUR
AU  - Jocković, Jelena
AU  - Rajčević, Nemanja
AU  - Zorić, Lana
AU  - Jocković, Milan
AU  - Radanović, Aleksandra
AU  - Cvejić, Sandra
AU  - Jocić, Siniša
AU  - Vujisić, Ljubodrag
AU  - Miladinović, Dragana
AU  - Miklič, Vladimir
AU  - Luković, Jadranka
PY  - 2024
UR  - http://fiver.ifvcns.rs/handle/123456789/4287
AB  - Although flower pollinator interactions are known to be mediated by floral traits, not enough attention has been paid to the research of secretory tissues and volatile components of sunflower disc florets as potentially important parameters in breeding programs. (1) To our knowledge, this is the first integrated study aimed at better understanding the attractiveness of sunflower capitula to insects. In the study, we have made a very detailed comparative analysis of secretory tissues and the characterization of the volatile components (VOCs) of disc florets in 10 wild perennial Helianthus species. (2) For anatomical analyses, cross-sections were obtained from the nectary zone of disc florets using a cryotechnique procedure. Micromorphological observation and morphological and anatomical analysis of disc florets were performed using light and scanning electron microscopy. For VOCs, we applied headspace, GC-FID, and GC/MS analyses. (3) The obtained results indicate that there is a difference between the analyzed traits among studied species. H. eggertii, H. hirsutus, H. mollis, H. resinosus, and H. tuberosus had high disc diameter values, a high cross-section area and disc floret corolla length, as well as the largest cross-section area and thickness of the disc florets nectary. In the analyzed VOCs, 30 different compounds were detected. The highest yield and quantity of α-Pinene was observed in H. mollis. (4) Inflorescence features, such as receptacle diameter, corolla and secretory tissue properties, and floret VOCs production and characterization, provided valuable information that can be used as guidelines in sunflower breeding programs to maximize pollinator attractiveness and increase seed yield.
PB  - Basel : MDPI
T2  - Plants - Basel
T1  - Secretory Tissues and Volatile Components of Disc Florets in Several Wild Helianthus L. Species
IS  - 3
SP  - 345
VL  - 13
DO  - 10.3390/plants13030345
ER  - 
@article{
author = "Jocković, Jelena and Rajčević, Nemanja and Zorić, Lana and Jocković, Milan and Radanović, Aleksandra and Cvejić, Sandra and Jocić, Siniša and Vujisić, Ljubodrag and Miladinović, Dragana and Miklič, Vladimir and Luković, Jadranka",
year = "2024",
abstract = "Although flower pollinator interactions are known to be mediated by floral traits, not enough attention has been paid to the research of secretory tissues and volatile components of sunflower disc florets as potentially important parameters in breeding programs. (1) To our knowledge, this is the first integrated study aimed at better understanding the attractiveness of sunflower capitula to insects. In the study, we have made a very detailed comparative analysis of secretory tissues and the characterization of the volatile components (VOCs) of disc florets in 10 wild perennial Helianthus species. (2) For anatomical analyses, cross-sections were obtained from the nectary zone of disc florets using a cryotechnique procedure. Micromorphological observation and morphological and anatomical analysis of disc florets were performed using light and scanning electron microscopy. For VOCs, we applied headspace, GC-FID, and GC/MS analyses. (3) The obtained results indicate that there is a difference between the analyzed traits among studied species. H. eggertii, H. hirsutus, H. mollis, H. resinosus, and H. tuberosus had high disc diameter values, a high cross-section area and disc floret corolla length, as well as the largest cross-section area and thickness of the disc florets nectary. In the analyzed VOCs, 30 different compounds were detected. The highest yield and quantity of α-Pinene was observed in H. mollis. (4) Inflorescence features, such as receptacle diameter, corolla and secretory tissue properties, and floret VOCs production and characterization, provided valuable information that can be used as guidelines in sunflower breeding programs to maximize pollinator attractiveness and increase seed yield.",
publisher = "Basel : MDPI",
journal = "Plants - Basel",
title = "Secretory Tissues and Volatile Components of Disc Florets in Several Wild Helianthus L. Species",
number = "3",
pages = "345",
volume = "13",
doi = "10.3390/plants13030345"
}
Jocković, J., Rajčević, N., Zorić, L., Jocković, M., Radanović, A., Cvejić, S., Jocić, S., Vujisić, L., Miladinović, D., Miklič, V.,& Luković, J.. (2024). Secretory Tissues and Volatile Components of Disc Florets in Several Wild Helianthus L. Species. in Plants - Basel
Basel : MDPI., 13(3), 345.
https://doi.org/10.3390/plants13030345
Jocković J, Rajčević N, Zorić L, Jocković M, Radanović A, Cvejić S, Jocić S, Vujisić L, Miladinović D, Miklič V, Luković J. Secretory Tissues and Volatile Components of Disc Florets in Several Wild Helianthus L. Species. in Plants - Basel. 2024;13(3):345.
doi:10.3390/plants13030345 .
Jocković, Jelena, Rajčević, Nemanja, Zorić, Lana, Jocković, Milan, Radanović, Aleksandra, Cvejić, Sandra, Jocić, Siniša, Vujisić, Ljubodrag, Miladinović, Dragana, Miklič, Vladimir, Luković, Jadranka, "Secretory Tissues and Volatile Components of Disc Florets in Several Wild Helianthus L. Species" in Plants - Basel, 13, no. 3 (2024):345,
https://doi.org/10.3390/plants13030345 . .

Screening of annual wild Helianthus species for Frankliniella occidentalis tolerance

Jocković, Jelena; Gvozdenac, Sonja; Paleš, Ana; Cvejić, Sandra; Jocković, Milan; Dedić, Boško; Ćuk, Nemanja

(Banja Luka : University of Banja Luka, Faculty of Agriculture, 2024)

TY  - CONF
AU  - Jocković, Jelena
AU  - Gvozdenac, Sonja
AU  - Paleš, Ana
AU  - Cvejić, Sandra
AU  - Jocković, Milan
AU  - Dedić, Boško
AU  - Ćuk, Nemanja
PY  - 2024
UR  - http://fiver.ifvcns.rs/handle/123456789/4665
AB  - Frankliniella occidentalis (thrips) is a widespread polyphagous insect pest that causes damage and yield losses. Control of this and other thrips species is challenging due to the emergence of insecticide-resistant populations. Wild sunflower species have proven useful in sunflower breeding programs as a source of resistance genes. Therefore, this work is aimed to evaluate the suseptibility of five annual wild species of Helianthus (H. annuus, H. argophillus, H. neglectus, H. praecox and H. petiolaris) in relation to the tolerance of F. occidentalis. The bioassay was set up in a greenhouse with an uncontrolled thrips population, in ten replicates. The number of adults of F. occidentalis was counted twice during the experiment, within ten days, from five leaves of each plant (replication). The density of non-glandular trichomes on both epidermises was analyzed with a light microscope on the same leaves (except H. argophyllus). According to our results, the highest average number of thrips adults was on H. annuus and H. argophilus during both observation periods that also have a very dense indumetnum. The most tolerant, with the lowest number of thrips adults were H. praecox and H. neglectus, characterized with less developed indumentum. According to our results, we can conclude that the density of non-glandular trichomes does not affect the preference of F. occidentalis. However, the development and distribution of the leaf epidermal cuticle, epicuticular waxes and glandular trichomes (capitate and linear) may be related to the degree of resistance, which is the subject of our future research.
PB  - Banja Luka : University of Banja Luka, Faculty of Agriculture
C3  - Book of Abstracts, 13th International Symposium on Agricultural Sciences “AgroReS 2024”, 27-30 May 2024, Trebinje, Bosnia and Herzegovina
T1  - Screening of annual wild Helianthus species for Frankliniella occidentalis tolerance
EP  - 170
SP  - 170
UR  - https://hdl.handle.net/21.15107/rcub_fiver_4665
ER  - 
@conference{
author = "Jocković, Jelena and Gvozdenac, Sonja and Paleš, Ana and Cvejić, Sandra and Jocković, Milan and Dedić, Boško and Ćuk, Nemanja",
year = "2024",
abstract = "Frankliniella occidentalis (thrips) is a widespread polyphagous insect pest that causes damage and yield losses. Control of this and other thrips species is challenging due to the emergence of insecticide-resistant populations. Wild sunflower species have proven useful in sunflower breeding programs as a source of resistance genes. Therefore, this work is aimed to evaluate the suseptibility of five annual wild species of Helianthus (H. annuus, H. argophillus, H. neglectus, H. praecox and H. petiolaris) in relation to the tolerance of F. occidentalis. The bioassay was set up in a greenhouse with an uncontrolled thrips population, in ten replicates. The number of adults of F. occidentalis was counted twice during the experiment, within ten days, from five leaves of each plant (replication). The density of non-glandular trichomes on both epidermises was analyzed with a light microscope on the same leaves (except H. argophyllus). According to our results, the highest average number of thrips adults was on H. annuus and H. argophilus during both observation periods that also have a very dense indumetnum. The most tolerant, with the lowest number of thrips adults were H. praecox and H. neglectus, characterized with less developed indumentum. According to our results, we can conclude that the density of non-glandular trichomes does not affect the preference of F. occidentalis. However, the development and distribution of the leaf epidermal cuticle, epicuticular waxes and glandular trichomes (capitate and linear) may be related to the degree of resistance, which is the subject of our future research.",
publisher = "Banja Luka : University of Banja Luka, Faculty of Agriculture",
journal = "Book of Abstracts, 13th International Symposium on Agricultural Sciences “AgroReS 2024”, 27-30 May 2024, Trebinje, Bosnia and Herzegovina",
title = "Screening of annual wild Helianthus species for Frankliniella occidentalis tolerance",
pages = "170-170",
url = "https://hdl.handle.net/21.15107/rcub_fiver_4665"
}
Jocković, J., Gvozdenac, S., Paleš, A., Cvejić, S., Jocković, M., Dedić, B.,& Ćuk, N.. (2024). Screening of annual wild Helianthus species for Frankliniella occidentalis tolerance. in Book of Abstracts, 13th International Symposium on Agricultural Sciences “AgroReS 2024”, 27-30 May 2024, Trebinje, Bosnia and Herzegovina
Banja Luka : University of Banja Luka, Faculty of Agriculture., 170-170.
https://hdl.handle.net/21.15107/rcub_fiver_4665
Jocković J, Gvozdenac S, Paleš A, Cvejić S, Jocković M, Dedić B, Ćuk N. Screening of annual wild Helianthus species for Frankliniella occidentalis tolerance. in Book of Abstracts, 13th International Symposium on Agricultural Sciences “AgroReS 2024”, 27-30 May 2024, Trebinje, Bosnia and Herzegovina. 2024;:170-170.
https://hdl.handle.net/21.15107/rcub_fiver_4665 .
Jocković, Jelena, Gvozdenac, Sonja, Paleš, Ana, Cvejić, Sandra, Jocković, Milan, Dedić, Boško, Ćuk, Nemanja, "Screening of annual wild Helianthus species for Frankliniella occidentalis tolerance" in Book of Abstracts, 13th International Symposium on Agricultural Sciences “AgroReS 2024”, 27-30 May 2024, Trebinje, Bosnia and Herzegovina (2024):170-170,
https://hdl.handle.net/21.15107/rcub_fiver_4665 .

Biochemical response of sunflower inbred lines inoculated with Macrophomina phaseolina

Ćuk, Nemanja; Kiprovski, Biljana; Cvejić, Sandra; Dedić, Boško; Babec, Brankica; Krstić, Miloš; Jocić, Siniša; Miklič, Vladimir; Jocković, Jelena; Jocković, Milan; Mladenov, Velimir

(COST Association, 2024)

TY  - CONF
AU  - Ćuk, Nemanja
AU  - Kiprovski, Biljana
AU  - Cvejić, Sandra
AU  - Dedić, Boško
AU  - Babec, Brankica
AU  - Krstić, Miloš
AU  - Jocić, Siniša
AU  - Miklič, Vladimir
AU  - Jocković, Jelena
AU  - Jocković, Milan
AU  - Mladenov, Velimir
PY  - 2024
UR  - http://fiver.ifvcns.rs/handle/123456789/4697
AB  - Macrophomina phaseolina, the causative agent of charcoal rot, affects a wide array of plant hosts, including sunflower. This disease thrives in warm, arid conditions, leading to symptoms such as the wilting, drying, and premature ripening of sunflower plants. This study aims to explore the biochemical responses of 15 inbred lines, each exhibiting varying levels of resistance, to uncover potential correlations between resistance levels and biochemical reactions in sunflower inbred lines. The investigation focused on: total protein content (TPC), lipid peroxidation intensity as a marker of membrane integrity (LP), reduced glutathione (GSH), superoxide-dismutase activity (SOD), and total phenolic content as antioxidant compounds (TP). These parameters were assessed 10 days following the laboratory inoculation of inbred lines with the pathogen and compared with disease severity. Correlations between resistance levels and the results of these five assays were analyzed in conjunction with disease severity observed in the inbred lines. Remarkably, after the 10-day assessment period, only the total phenolic content showed a significant positive correlation with the resistance of inbred lines (r=0.712; p<0.05). This finding identified inbred lines PB 21 and L 1 as the most resilient among the tested varieties. It was observed that different inbred lines exhibit distinct responses to M. phaseolina. However, in the majority of cases, an increase in total phenolic content was noted in sunflower plants following inoculation. This suggests a potential defensive mechanism triggered by the pathogen. Further studies can analyze more precisely into the molecular intricacies of sunflower resistance to charcoal rot and validate these findings across broader genetic backgrounds.
PB  - COST Association
C3  - Book of Abstracts, 4th EPI-CATCH Conference Epigenetic Mechanisms of Crop Adaptation to Climate Change, Novi Sad, 4-6 June 2024
T1  - Biochemical response of sunflower inbred lines inoculated with Macrophomina phaseolina
EP  - 28
SP  - 28
UR  - https://hdl.handle.net/21.15107/rcub_fiver_4697
ER  - 
@conference{
author = "Ćuk, Nemanja and Kiprovski, Biljana and Cvejić, Sandra and Dedić, Boško and Babec, Brankica and Krstić, Miloš and Jocić, Siniša and Miklič, Vladimir and Jocković, Jelena and Jocković, Milan and Mladenov, Velimir",
year = "2024",
abstract = "Macrophomina phaseolina, the causative agent of charcoal rot, affects a wide array of plant hosts, including sunflower. This disease thrives in warm, arid conditions, leading to symptoms such as the wilting, drying, and premature ripening of sunflower plants. This study aims to explore the biochemical responses of 15 inbred lines, each exhibiting varying levels of resistance, to uncover potential correlations between resistance levels and biochemical reactions in sunflower inbred lines. The investigation focused on: total protein content (TPC), lipid peroxidation intensity as a marker of membrane integrity (LP), reduced glutathione (GSH), superoxide-dismutase activity (SOD), and total phenolic content as antioxidant compounds (TP). These parameters were assessed 10 days following the laboratory inoculation of inbred lines with the pathogen and compared with disease severity. Correlations between resistance levels and the results of these five assays were analyzed in conjunction with disease severity observed in the inbred lines. Remarkably, after the 10-day assessment period, only the total phenolic content showed a significant positive correlation with the resistance of inbred lines (r=0.712; p<0.05). This finding identified inbred lines PB 21 and L 1 as the most resilient among the tested varieties. It was observed that different inbred lines exhibit distinct responses to M. phaseolina. However, in the majority of cases, an increase in total phenolic content was noted in sunflower plants following inoculation. This suggests a potential defensive mechanism triggered by the pathogen. Further studies can analyze more precisely into the molecular intricacies of sunflower resistance to charcoal rot and validate these findings across broader genetic backgrounds.",
publisher = "COST Association",
journal = "Book of Abstracts, 4th EPI-CATCH Conference Epigenetic Mechanisms of Crop Adaptation to Climate Change, Novi Sad, 4-6 June 2024",
title = "Biochemical response of sunflower inbred lines inoculated with Macrophomina phaseolina",
pages = "28-28",
url = "https://hdl.handle.net/21.15107/rcub_fiver_4697"
}
Ćuk, N., Kiprovski, B., Cvejić, S., Dedić, B., Babec, B., Krstić, M., Jocić, S., Miklič, V., Jocković, J., Jocković, M.,& Mladenov, V.. (2024). Biochemical response of sunflower inbred lines inoculated with Macrophomina phaseolina. in Book of Abstracts, 4th EPI-CATCH Conference Epigenetic Mechanisms of Crop Adaptation to Climate Change, Novi Sad, 4-6 June 2024
COST Association., 28-28.
https://hdl.handle.net/21.15107/rcub_fiver_4697
Ćuk N, Kiprovski B, Cvejić S, Dedić B, Babec B, Krstić M, Jocić S, Miklič V, Jocković J, Jocković M, Mladenov V. Biochemical response of sunflower inbred lines inoculated with Macrophomina phaseolina. in Book of Abstracts, 4th EPI-CATCH Conference Epigenetic Mechanisms of Crop Adaptation to Climate Change, Novi Sad, 4-6 June 2024. 2024;:28-28.
https://hdl.handle.net/21.15107/rcub_fiver_4697 .
Ćuk, Nemanja, Kiprovski, Biljana, Cvejić, Sandra, Dedić, Boško, Babec, Brankica, Krstić, Miloš, Jocić, Siniša, Miklič, Vladimir, Jocković, Jelena, Jocković, Milan, Mladenov, Velimir, "Biochemical response of sunflower inbred lines inoculated with Macrophomina phaseolina" in Book of Abstracts, 4th EPI-CATCH Conference Epigenetic Mechanisms of Crop Adaptation to Climate Change, Novi Sad, 4-6 June 2024 (2024):28-28,
https://hdl.handle.net/21.15107/rcub_fiver_4697 .

Biochemical response of sunflower inbred lines inoculated with Macrophomina phaseolina

Ćuk, Nemanja; Kiprovski, Biljana; Cvejić, Sandra; Dedić, Boško; Babec, Brankica; Krstić, Miloš; Jocić, Siniša; Miklič, Vladimir; Jocković, Jelena; Jocković, Milan; Mladenov, Velimir

(2024)

TY  - CONF
AU  - Ćuk, Nemanja
AU  - Kiprovski, Biljana
AU  - Cvejić, Sandra
AU  - Dedić, Boško
AU  - Babec, Brankica
AU  - Krstić, Miloš
AU  - Jocić, Siniša
AU  - Miklič, Vladimir
AU  - Jocković, Jelena
AU  - Jocković, Milan
AU  - Mladenov, Velimir
PY  - 2024
UR  - http://fiver.ifvcns.rs/handle/123456789/4698
AB  - Macrophomina phaseolina, the causative agent of charcoal rot, affects a wide array of plant hosts, including sunflower. This disease thrives in warm, arid conditions, leading to symptoms such as the wilting, drying, and premature ripening of sunflower plants. This study aims to explore the biochemical responses of 15 inbred lines, each exhibiting varying levels of resistance, to uncover potential correlations between resistance levels and biochemical reactions in sunflower inbred lines. The investigation focused on: total protein content (TPC), lipid peroxidation intensity as a marker of membrane integrity (LP), reduced glutathione (GSH), superoxide-dismutase activity (SOD), and total phenolic content as antioxidant compounds (TP). These parameters were assessed 10 days following the laboratory inoculation of inbred lines with the pathogen and compared with disease severity. Correlations between resistance levels and the results of these five assays were analyzed in conjunction with disease severity observed in the inbred lines. Remarkably, after the 10-day assessment period, only the total phenolic content showed a significant positive correlation with the resistance of inbred lines (r=0.712; p<0.05). This finding identified inbred lines PB 21 and L 1 as the most resilient among the tested varieties. It was observed that different inbred lines exhibit distinct responses to M. phaseolina. However, in the majority of cases, an increase in total phenolic content was noted in sunflower plants following inoculation. This suggests a potential defensive mechanism triggered by the pathogen. Further studies can analyze more precisely into the molecular intricacies of sunflower resistance to charcoal rot and validate these findings across broader genetic backgrounds.
C3  - Book of Abstracts, 4th EPI-CATCH Conference Epigenetic Mechanisms of Crop Adaptation to Climate Change, Novi Sad, 4-6 June 2024
T1  - Biochemical response of sunflower inbred lines inoculated with Macrophomina phaseolina
UR  - https://hdl.handle.net/21.15107/rcub_fiver_4698
ER  - 
@conference{
author = "Ćuk, Nemanja and Kiprovski, Biljana and Cvejić, Sandra and Dedić, Boško and Babec, Brankica and Krstić, Miloš and Jocić, Siniša and Miklič, Vladimir and Jocković, Jelena and Jocković, Milan and Mladenov, Velimir",
year = "2024",
abstract = "Macrophomina phaseolina, the causative agent of charcoal rot, affects a wide array of plant hosts, including sunflower. This disease thrives in warm, arid conditions, leading to symptoms such as the wilting, drying, and premature ripening of sunflower plants. This study aims to explore the biochemical responses of 15 inbred lines, each exhibiting varying levels of resistance, to uncover potential correlations between resistance levels and biochemical reactions in sunflower inbred lines. The investigation focused on: total protein content (TPC), lipid peroxidation intensity as a marker of membrane integrity (LP), reduced glutathione (GSH), superoxide-dismutase activity (SOD), and total phenolic content as antioxidant compounds (TP). These parameters were assessed 10 days following the laboratory inoculation of inbred lines with the pathogen and compared with disease severity. Correlations between resistance levels and the results of these five assays were analyzed in conjunction with disease severity observed in the inbred lines. Remarkably, after the 10-day assessment period, only the total phenolic content showed a significant positive correlation with the resistance of inbred lines (r=0.712; p<0.05). This finding identified inbred lines PB 21 and L 1 as the most resilient among the tested varieties. It was observed that different inbred lines exhibit distinct responses to M. phaseolina. However, in the majority of cases, an increase in total phenolic content was noted in sunflower plants following inoculation. This suggests a potential defensive mechanism triggered by the pathogen. Further studies can analyze more precisely into the molecular intricacies of sunflower resistance to charcoal rot and validate these findings across broader genetic backgrounds.",
journal = "Book of Abstracts, 4th EPI-CATCH Conference Epigenetic Mechanisms of Crop Adaptation to Climate Change, Novi Sad, 4-6 June 2024",
title = "Biochemical response of sunflower inbred lines inoculated with Macrophomina phaseolina",
url = "https://hdl.handle.net/21.15107/rcub_fiver_4698"
}
Ćuk, N., Kiprovski, B., Cvejić, S., Dedić, B., Babec, B., Krstić, M., Jocić, S., Miklič, V., Jocković, J., Jocković, M.,& Mladenov, V.. (2024). Biochemical response of sunflower inbred lines inoculated with Macrophomina phaseolina. in Book of Abstracts, 4th EPI-CATCH Conference Epigenetic Mechanisms of Crop Adaptation to Climate Change, Novi Sad, 4-6 June 2024.
https://hdl.handle.net/21.15107/rcub_fiver_4698
Ćuk N, Kiprovski B, Cvejić S, Dedić B, Babec B, Krstić M, Jocić S, Miklič V, Jocković J, Jocković M, Mladenov V. Biochemical response of sunflower inbred lines inoculated with Macrophomina phaseolina. in Book of Abstracts, 4th EPI-CATCH Conference Epigenetic Mechanisms of Crop Adaptation to Climate Change, Novi Sad, 4-6 June 2024. 2024;.
https://hdl.handle.net/21.15107/rcub_fiver_4698 .
Ćuk, Nemanja, Kiprovski, Biljana, Cvejić, Sandra, Dedić, Boško, Babec, Brankica, Krstić, Miloš, Jocić, Siniša, Miklič, Vladimir, Jocković, Jelena, Jocković, Milan, Mladenov, Velimir, "Biochemical response of sunflower inbred lines inoculated with Macrophomina phaseolina" in Book of Abstracts, 4th EPI-CATCH Conference Epigenetic Mechanisms of Crop Adaptation to Climate Change, Novi Sad, 4-6 June 2024 (2024),
https://hdl.handle.net/21.15107/rcub_fiver_4698 .

Designing climate-smart sunflower

Radanović, Aleksandra; Cvejić, Sandra; Dedić, Boško; Alf, M.; Jocković, Milan; Jocić, Siniša; Jocković, Jelena; Kondić-Špika, Ankica; Horn, Renata; Miladinović, Dragana

(Murcia : University of Murcia, 2024)

TY  - CONF
AU  - Radanović, Aleksandra
AU  - Cvejić, Sandra
AU  - Dedić, Boško
AU  - Alf, M.
AU  - Jocković, Milan
AU  - Jocić, Siniša
AU  - Jocković, Jelena
AU  - Kondić-Špika, Ankica
AU  - Horn, Renata
AU  - Miladinović, Dragana
PY  - 2024
UR  - http://fiver.ifvcns.rs/handle/123456789/4719
AB  - Sunflower (Helianthus annuus L.) is the fourth most important oil crop worldwide grown in almost all continents. Ever since climate change started causing significant seed and oil yield in sunflower, breeders widened their breeding programs into breeding for abiotic stress resistance. Designing climate-smart sunflower will help maintain and desirably increase existing seed and oil yields and also enable a more stable oil source for the already shaken oil market. Drought is one of the most important abiotic stress interfering with crop growth and development. Sunflower is especially sensitive to drought at germination, anthesis and achene-filling phenophases. Overall, drought can lead to up to 51% yield loss which is why it is imperative to identify and create drought-tolerant genotypes, as well as mine for drought-tolerance genes and traits to accelerate the sunflower breeding process. Through different projects financed by the European Commission and the Science Fund of the Republic of Serbia researchers from the Institute of Field and Vegetable Crops have undertaken a comprehensive approach to mine for drought-tolerant traits, mainly root traits as well as to examine genetic and epigenetics mechanisms of drought stress tolerance. We have exploited different phenotyping tools for the identification of drought-tolerant sunflower genotypes and associated traits such as in vitro screening and rhizothrons. Further studies will be oriented toward examining the transcriptome and epigenome of the most tolerant and sensitive sunflower genotypes.
PB  - Murcia : University of Murcia
C3  - Book of Abstracts, 1st RECROP Annual Meeting Climate-Proof Crop Reproduction: From lab to farm, Murcia, 22-24 May 2024
T1  - Designing climate-smart sunflower
SP  - 63
UR  - https://hdl.handle.net/21.15107/rcub_fiver_4719
ER  - 
@conference{
author = "Radanović, Aleksandra and Cvejić, Sandra and Dedić, Boško and Alf, M. and Jocković, Milan and Jocić, Siniša and Jocković, Jelena and Kondić-Špika, Ankica and Horn, Renata and Miladinović, Dragana",
year = "2024",
abstract = "Sunflower (Helianthus annuus L.) is the fourth most important oil crop worldwide grown in almost all continents. Ever since climate change started causing significant seed and oil yield in sunflower, breeders widened their breeding programs into breeding for abiotic stress resistance. Designing climate-smart sunflower will help maintain and desirably increase existing seed and oil yields and also enable a more stable oil source for the already shaken oil market. Drought is one of the most important abiotic stress interfering with crop growth and development. Sunflower is especially sensitive to drought at germination, anthesis and achene-filling phenophases. Overall, drought can lead to up to 51% yield loss which is why it is imperative to identify and create drought-tolerant genotypes, as well as mine for drought-tolerance genes and traits to accelerate the sunflower breeding process. Through different projects financed by the European Commission and the Science Fund of the Republic of Serbia researchers from the Institute of Field and Vegetable Crops have undertaken a comprehensive approach to mine for drought-tolerant traits, mainly root traits as well as to examine genetic and epigenetics mechanisms of drought stress tolerance. We have exploited different phenotyping tools for the identification of drought-tolerant sunflower genotypes and associated traits such as in vitro screening and rhizothrons. Further studies will be oriented toward examining the transcriptome and epigenome of the most tolerant and sensitive sunflower genotypes.",
publisher = "Murcia : University of Murcia",
journal = "Book of Abstracts, 1st RECROP Annual Meeting Climate-Proof Crop Reproduction: From lab to farm, Murcia, 22-24 May 2024",
title = "Designing climate-smart sunflower",
pages = "63",
url = "https://hdl.handle.net/21.15107/rcub_fiver_4719"
}
Radanović, A., Cvejić, S., Dedić, B., Alf, M., Jocković, M., Jocić, S., Jocković, J., Kondić-Špika, A., Horn, R.,& Miladinović, D.. (2024). Designing climate-smart sunflower. in Book of Abstracts, 1st RECROP Annual Meeting Climate-Proof Crop Reproduction: From lab to farm, Murcia, 22-24 May 2024
Murcia : University of Murcia., 63.
https://hdl.handle.net/21.15107/rcub_fiver_4719
Radanović A, Cvejić S, Dedić B, Alf M, Jocković M, Jocić S, Jocković J, Kondić-Špika A, Horn R, Miladinović D. Designing climate-smart sunflower. in Book of Abstracts, 1st RECROP Annual Meeting Climate-Proof Crop Reproduction: From lab to farm, Murcia, 22-24 May 2024. 2024;:63.
https://hdl.handle.net/21.15107/rcub_fiver_4719 .
Radanović, Aleksandra, Cvejić, Sandra, Dedić, Boško, Alf, M., Jocković, Milan, Jocić, Siniša, Jocković, Jelena, Kondić-Špika, Ankica, Horn, Renata, Miladinović, Dragana, "Designing climate-smart sunflower" in Book of Abstracts, 1st RECROP Annual Meeting Climate-Proof Crop Reproduction: From lab to farm, Murcia, 22-24 May 2024 (2024):63,
https://hdl.handle.net/21.15107/rcub_fiver_4719 .

Breeding for resilience: enhancing sunflower tolerance to drought stress

Cvejić, Sandra; Dedić, Boško; Radanović, Aleksandra; Jocković, Milan; Ćuk, Nemanja; Jocković, Jelena; Gvozdenac, Sonja; Miladinović, Dragana; Jocić, Siniša

(Brussels : COST Association, 2024)

TY  - CONF
AU  - Cvejić, Sandra
AU  - Dedić, Boško
AU  - Radanović, Aleksandra
AU  - Jocković, Milan
AU  - Ćuk, Nemanja
AU  - Jocković, Jelena
AU  - Gvozdenac, Sonja
AU  - Miladinović, Dragana
AU  - Jocić, Siniša
PY  - 2024
UR  - http://fiver.ifvcns.rs/handle/123456789/4722
AB  - Sunflower is an economically important oil crop, mostly grown in arid and semi-arid regions where drought stress is a major limiting factor. Although sunflower is generally considered tolerant, drought stress still significantly hampers its productivity and nutritional quality across its major cultivation areas. Therefore, understanding the impact of stress and plant response is vital for enhancing the sunflower's drought tolerance. Mitigating the adverse effects of drought on productivity and fostering the development of tolerant sunflower genotypes have emerged as strategic objectives in sunflower breeding. Breeders use all available resources and methods to increase genetic variability, thereby enhancing the probability of generating highly productive genotypes. Several mechanisms (morphological and physiological) have been developed that help mitigate the effects of drought and adapt to arid or water-limited environments. Recognizing that phenotype manifestation depends on genotype-environment interactions, enhancing genetic variation in plant architecture is imperative for optimizing productivity under prevailing environmental conditions. Genomic and transcriptomic studies have elucidated the complex genetic mechanisms underlying sunflower's response to drought stress, facilitating the discovery of novel genes and pathways involved in drought tolerance. This molecular insight has enabled breeders to accelerate the introgression of favorable alleles and genomic regions conferring drought resilience into elite sunflower germplasm.
PB  - Brussels : COST Association
C3  - Book of Abstracts, 4th EPI-CATCH Conference Epigenetic Mechanisms of Crop Adaptation to Climate Change, Novi Sad, 4-6 June 2024
T1  - Breeding for resilience: enhancing sunflower tolerance to drought stress
SP  - 26
UR  - https://hdl.handle.net/21.15107/rcub_fiver_4722
ER  - 
@conference{
author = "Cvejić, Sandra and Dedić, Boško and Radanović, Aleksandra and Jocković, Milan and Ćuk, Nemanja and Jocković, Jelena and Gvozdenac, Sonja and Miladinović, Dragana and Jocić, Siniša",
year = "2024",
abstract = "Sunflower is an economically important oil crop, mostly grown in arid and semi-arid regions where drought stress is a major limiting factor. Although sunflower is generally considered tolerant, drought stress still significantly hampers its productivity and nutritional quality across its major cultivation areas. Therefore, understanding the impact of stress and plant response is vital for enhancing the sunflower's drought tolerance. Mitigating the adverse effects of drought on productivity and fostering the development of tolerant sunflower genotypes have emerged as strategic objectives in sunflower breeding. Breeders use all available resources and methods to increase genetic variability, thereby enhancing the probability of generating highly productive genotypes. Several mechanisms (morphological and physiological) have been developed that help mitigate the effects of drought and adapt to arid or water-limited environments. Recognizing that phenotype manifestation depends on genotype-environment interactions, enhancing genetic variation in plant architecture is imperative for optimizing productivity under prevailing environmental conditions. Genomic and transcriptomic studies have elucidated the complex genetic mechanisms underlying sunflower's response to drought stress, facilitating the discovery of novel genes and pathways involved in drought tolerance. This molecular insight has enabled breeders to accelerate the introgression of favorable alleles and genomic regions conferring drought resilience into elite sunflower germplasm.",
publisher = "Brussels : COST Association",
journal = "Book of Abstracts, 4th EPI-CATCH Conference Epigenetic Mechanisms of Crop Adaptation to Climate Change, Novi Sad, 4-6 June 2024",
title = "Breeding for resilience: enhancing sunflower tolerance to drought stress",
pages = "26",
url = "https://hdl.handle.net/21.15107/rcub_fiver_4722"
}
Cvejić, S., Dedić, B., Radanović, A., Jocković, M., Ćuk, N., Jocković, J., Gvozdenac, S., Miladinović, D.,& Jocić, S.. (2024). Breeding for resilience: enhancing sunflower tolerance to drought stress. in Book of Abstracts, 4th EPI-CATCH Conference Epigenetic Mechanisms of Crop Adaptation to Climate Change, Novi Sad, 4-6 June 2024
Brussels : COST Association., 26.
https://hdl.handle.net/21.15107/rcub_fiver_4722
Cvejić S, Dedić B, Radanović A, Jocković M, Ćuk N, Jocković J, Gvozdenac S, Miladinović D, Jocić S. Breeding for resilience: enhancing sunflower tolerance to drought stress. in Book of Abstracts, 4th EPI-CATCH Conference Epigenetic Mechanisms of Crop Adaptation to Climate Change, Novi Sad, 4-6 June 2024. 2024;:26.
https://hdl.handle.net/21.15107/rcub_fiver_4722 .
Cvejić, Sandra, Dedić, Boško, Radanović, Aleksandra, Jocković, Milan, Ćuk, Nemanja, Jocković, Jelena, Gvozdenac, Sonja, Miladinović, Dragana, Jocić, Siniša, "Breeding for resilience: enhancing sunflower tolerance to drought stress" in Book of Abstracts, 4th EPI-CATCH Conference Epigenetic Mechanisms of Crop Adaptation to Climate Change, Novi Sad, 4-6 June 2024 (2024):26,
https://hdl.handle.net/21.15107/rcub_fiver_4722 .

A comprehensive approach to enhancing sunflower drought tolerance

Radanović, Aleksandra; Cvejić, Sandra; Dedić, Boško; Jocković, Milan; Jocić, Siniša; Jocković, Jelena; Gvozdenac, Sonja; Ćuk, Nemanja; Hladni, Nada; Marjanović-Jeromela, Ana; Kondić-Špika, Ankica; Miladinović, Dragana

(Brussels : COST Association, 2024)

TY  - CONF
AU  - Radanović, Aleksandra
AU  - Cvejić, Sandra
AU  - Dedić, Boško
AU  - Jocković, Milan
AU  - Jocić, Siniša
AU  - Jocković, Jelena
AU  - Gvozdenac, Sonja
AU  - Ćuk, Nemanja
AU  - Hladni, Nada
AU  - Marjanović-Jeromela, Ana
AU  - Kondić-Špika, Ankica
AU  - Miladinović, Dragana
PY  - 2024
UR  - http://fiver.ifvcns.rs/handle/123456789/4723
AB  - Agricultural production faces a significant reduction as a result of unpredictable weather events due to global warming. Among the most significant abiotic stresses contributing to crop yield loss are drought, extreme temperatures, and soil salinity. Sunflower, the fourth most important oil crop worldwide, is considered to be moderately drought tolerant. However, recent studies showed that drought can cause up to 51% yield loss. Breeders are thus facing a complicated challenge - breeding for drought resistance which is a quantitative trait causing complex changes on all levels: morphological, physiological, and molecular. Institute of Field and Vegetable Crops is situated in the Pannonia region which is characterized as one of the European regions that will be the most affected by extreme climate changes such as drought. Within our breeding programs and project activities, we are conducting sunflower phenotyping at the germination stage in in vitro conditions and rhizothrons to identify traits that can be exploited in drought-tolerant sunflower breeding. This research is accompanied by an analysis of the expression of genes identified as of potential interest in enhancing drought tolerance. Further studies will include analysis of lncRNAs and small RNAs to obtain a comprehensive knowledge of mechanisms involved in drought tolerance on a molecular level. The final goal is to identify key drought-tolerant genes as well as epigenetic-targeted genes.
PB  - Brussels : COST Association
C3  - Book of Abstracts, 4th EPI-CATCH Conference Epigenetic Mechanisms of Crop Adaptation to Climate Change, Novi Sad, 4-6 June 2024
T1  - A comprehensive approach to enhancing sunflower drought tolerance
SP  - 27
UR  - https://hdl.handle.net/21.15107/rcub_fiver_4723
ER  - 
@conference{
author = "Radanović, Aleksandra and Cvejić, Sandra and Dedić, Boško and Jocković, Milan and Jocić, Siniša and Jocković, Jelena and Gvozdenac, Sonja and Ćuk, Nemanja and Hladni, Nada and Marjanović-Jeromela, Ana and Kondić-Špika, Ankica and Miladinović, Dragana",
year = "2024",
abstract = "Agricultural production faces a significant reduction as a result of unpredictable weather events due to global warming. Among the most significant abiotic stresses contributing to crop yield loss are drought, extreme temperatures, and soil salinity. Sunflower, the fourth most important oil crop worldwide, is considered to be moderately drought tolerant. However, recent studies showed that drought can cause up to 51% yield loss. Breeders are thus facing a complicated challenge - breeding for drought resistance which is a quantitative trait causing complex changes on all levels: morphological, physiological, and molecular. Institute of Field and Vegetable Crops is situated in the Pannonia region which is characterized as one of the European regions that will be the most affected by extreme climate changes such as drought. Within our breeding programs and project activities, we are conducting sunflower phenotyping at the germination stage in in vitro conditions and rhizothrons to identify traits that can be exploited in drought-tolerant sunflower breeding. This research is accompanied by an analysis of the expression of genes identified as of potential interest in enhancing drought tolerance. Further studies will include analysis of lncRNAs and small RNAs to obtain a comprehensive knowledge of mechanisms involved in drought tolerance on a molecular level. The final goal is to identify key drought-tolerant genes as well as epigenetic-targeted genes.",
publisher = "Brussels : COST Association",
journal = "Book of Abstracts, 4th EPI-CATCH Conference Epigenetic Mechanisms of Crop Adaptation to Climate Change, Novi Sad, 4-6 June 2024",
title = "A comprehensive approach to enhancing sunflower drought tolerance",
pages = "27",
url = "https://hdl.handle.net/21.15107/rcub_fiver_4723"
}
Radanović, A., Cvejić, S., Dedić, B., Jocković, M., Jocić, S., Jocković, J., Gvozdenac, S., Ćuk, N., Hladni, N., Marjanović-Jeromela, A., Kondić-Špika, A.,& Miladinović, D.. (2024). A comprehensive approach to enhancing sunflower drought tolerance. in Book of Abstracts, 4th EPI-CATCH Conference Epigenetic Mechanisms of Crop Adaptation to Climate Change, Novi Sad, 4-6 June 2024
Brussels : COST Association., 27.
https://hdl.handle.net/21.15107/rcub_fiver_4723
Radanović A, Cvejić S, Dedić B, Jocković M, Jocić S, Jocković J, Gvozdenac S, Ćuk N, Hladni N, Marjanović-Jeromela A, Kondić-Špika A, Miladinović D. A comprehensive approach to enhancing sunflower drought tolerance. in Book of Abstracts, 4th EPI-CATCH Conference Epigenetic Mechanisms of Crop Adaptation to Climate Change, Novi Sad, 4-6 June 2024. 2024;:27.
https://hdl.handle.net/21.15107/rcub_fiver_4723 .
Radanović, Aleksandra, Cvejić, Sandra, Dedić, Boško, Jocković, Milan, Jocić, Siniša, Jocković, Jelena, Gvozdenac, Sonja, Ćuk, Nemanja, Hladni, Nada, Marjanović-Jeromela, Ana, Kondić-Špika, Ankica, Miladinović, Dragana, "A comprehensive approach to enhancing sunflower drought tolerance" in Book of Abstracts, 4th EPI-CATCH Conference Epigenetic Mechanisms of Crop Adaptation to Climate Change, Novi Sad, 4-6 June 2024 (2024):27,
https://hdl.handle.net/21.15107/rcub_fiver_4723 .

A Comprehensive Assessment of Sunflower Genetic Diversity Against Macrophomina phaseolina

Ćuk, Nemanja; Cvejić, Sandra; Mladenov, Velimir; Jocković, Milan; Krstić, Miloš; Babec, Brankica; Jocić, Siniša; Dedić, Boško

(Ankara : Ankara University, Faculty of Agriculture, 2024)

TY  - JOUR
AU  - Ćuk, Nemanja
AU  - Cvejić, Sandra
AU  - Mladenov, Velimir
AU  - Jocković, Milan
AU  - Krstić, Miloš
AU  - Babec, Brankica
AU  - Jocić, Siniša
AU  - Dedić, Boško
PY  - 2024
UR  - http://fiver.ifvcns.rs/handle/123456789/4775
AB  - The sunflower is a significant oil crop that can be cultivated in various environmental conditions. Due to the changing climate, the pathogen profile has been altered, posing a threat to sunflower production. Among the various threats, charcoal rot, caused by the soil-borne fungus Macrophomina phaseolina (Tassi) Goid, is one of the most significant pathogen. This study aimed to investigate the resistance of 80 sunflower inbred lines to this pathogen using two inoculation methods and naturally infested area under field conditions in two years, 2019 and 2020. The results showed that both inoculation methods and occurrence of disease in naturally infested area (DNI) effectively differentiated between resistant and susceptible inbred lines, with the toothpick method being the most effective. Thirteen inbred lines were resistant according to all inoculation methods, and the others were moderately resistant moderately susceptible or susceptible regarding to inoculation method. The study identified five inbred lines (Ha 74, L1, LIV 10, MA SC 2 and PB 21) as the most resistant, making them important sources for breeding sunflower hybrids resistant to M. phaseolina. Their resistance was confirmed in 2020, highlighting their potential to combat the impact of climate change on sunflower production. This study represents a valuable insight into the control of M. phaseolina using sunflower resistant genotypes, especially since resistance findings have been lacking in other plant species.
PB  - Ankara : Ankara University, Faculty of Agriculture
T2  - Journal of Agricultural Sciences (Tarim Bilimleri Dergisi)
T1  - A Comprehensive Assessment of Sunflower Genetic Diversity Against Macrophomina phaseolina
EP  - 525
IS  - 3
SP  - 513
VL  - 30
DO  - 10.15832/ankutbd.1288528
ER  - 
@article{
author = "Ćuk, Nemanja and Cvejić, Sandra and Mladenov, Velimir and Jocković, Milan and Krstić, Miloš and Babec, Brankica and Jocić, Siniša and Dedić, Boško",
year = "2024",
abstract = "The sunflower is a significant oil crop that can be cultivated in various environmental conditions. Due to the changing climate, the pathogen profile has been altered, posing a threat to sunflower production. Among the various threats, charcoal rot, caused by the soil-borne fungus Macrophomina phaseolina (Tassi) Goid, is one of the most significant pathogen. This study aimed to investigate the resistance of 80 sunflower inbred lines to this pathogen using two inoculation methods and naturally infested area under field conditions in two years, 2019 and 2020. The results showed that both inoculation methods and occurrence of disease in naturally infested area (DNI) effectively differentiated between resistant and susceptible inbred lines, with the toothpick method being the most effective. Thirteen inbred lines were resistant according to all inoculation methods, and the others were moderately resistant moderately susceptible or susceptible regarding to inoculation method. The study identified five inbred lines (Ha 74, L1, LIV 10, MA SC 2 and PB 21) as the most resistant, making them important sources for breeding sunflower hybrids resistant to M. phaseolina. Their resistance was confirmed in 2020, highlighting their potential to combat the impact of climate change on sunflower production. This study represents a valuable insight into the control of M. phaseolina using sunflower resistant genotypes, especially since resistance findings have been lacking in other plant species.",
publisher = "Ankara : Ankara University, Faculty of Agriculture",
journal = "Journal of Agricultural Sciences (Tarim Bilimleri Dergisi)",
title = "A Comprehensive Assessment of Sunflower Genetic Diversity Against Macrophomina phaseolina",
pages = "525-513",
number = "3",
volume = "30",
doi = "10.15832/ankutbd.1288528"
}
Ćuk, N., Cvejić, S., Mladenov, V., Jocković, M., Krstić, M., Babec, B., Jocić, S.,& Dedić, B.. (2024). A Comprehensive Assessment of Sunflower Genetic Diversity Against Macrophomina phaseolina. in Journal of Agricultural Sciences (Tarim Bilimleri Dergisi)
Ankara : Ankara University, Faculty of Agriculture., 30(3), 513-525.
https://doi.org/10.15832/ankutbd.1288528
Ćuk N, Cvejić S, Mladenov V, Jocković M, Krstić M, Babec B, Jocić S, Dedić B. A Comprehensive Assessment of Sunflower Genetic Diversity Against Macrophomina phaseolina. in Journal of Agricultural Sciences (Tarim Bilimleri Dergisi). 2024;30(3):513-525.
doi:10.15832/ankutbd.1288528 .
Ćuk, Nemanja, Cvejić, Sandra, Mladenov, Velimir, Jocković, Milan, Krstić, Miloš, Babec, Brankica, Jocić, Siniša, Dedić, Boško, "A Comprehensive Assessment of Sunflower Genetic Diversity Against Macrophomina phaseolina" in Journal of Agricultural Sciences (Tarim Bilimleri Dergisi), 30, no. 3 (2024):513-525,
https://doi.org/10.15832/ankutbd.1288528 . .
1

Recuperating from stress – How does sunflower recover from drought?

Radanović, Aleksandra; Dedić, Boško; Junker-Frohn, Laura; Galinski, Anna; Cvejić, Sandra; Jocković, Milan; Bursać, Srđan; Ćuk, Nemanja; Jocković, Jelena; Jocić, Siniša; Nagel, Kerstin; Miladinović, Dragana

(International Sunflower Association (ISA), 2024)

TY  - CONF
AU  - Radanović, Aleksandra
AU  - Dedić, Boško
AU  - Junker-Frohn, Laura
AU  - Galinski, Anna
AU  - Cvejić, Sandra
AU  - Jocković, Milan
AU  - Bursać, Srđan
AU  - Ćuk, Nemanja
AU  - Jocković, Jelena
AU  - Jocić, Siniša
AU  - Nagel, Kerstin
AU  - Miladinović, Dragana
PY  - 2024
UR  - http://fiver.ifvcns.rs/handle/123456789/4855
AB  - Climate change profoundly affects crop production. Under field conditions, there is
a cycle of rainfall and rainless periods. The intervals between rainfalls have become
prolonged in certain growing areas due to climate change leading to a significant reduction in
crop production. The ability of crops to recover from drought stress depends on the species,
genotype, and the duration and severity of drought stress. Sunflowers are particularly
sensitive to drought at the germination stage. Therefore, this study aimed to develop a test to
assess the capacity of sunflower to recover from stress at the initial developmental stage. The
test was condected in rhizotrons to monitor root growth in controlled conditions. After 7 days
of drought stress, plants were re-watered to reach the control's gravimetric water content (65%
qwc). Re-watering in rhizotrons can be challenging due to the surface depth ratio, which
hinders the uniform distribution of water. To address this, we introduced a novel slow rewatering method, facilitating a more homogeneous increase in soil water content throughout
the rhizotron. For developing this test, we selected a drought-sensitive sunflower line,
subjected it to drought conditions (50% gwc), and then re-watered it to observe its recovery
capacity. Root and shoot traits between control and treatment were analyzed, including total,
primary and lateral root length, root system width and depth, leaf area, and fresh and dry
shoot weight. This test will provide valuable insights into how sunflowers recover from
drought stress, which will be very helpful in breeding programs.
PB  - International Sunflower Association (ISA)
C3  - Proceedings, 21st International Sunflower Conference, 20-24 August 2024, Wuyuan, China
T1  - Recuperating from stress – How does sunflower recover from drought?
EP  - 76
SP  - 76
UR  - https://hdl.handle.net/21.15107/rcub_fiver_4855
ER  - 
@conference{
author = "Radanović, Aleksandra and Dedić, Boško and Junker-Frohn, Laura and Galinski, Anna and Cvejić, Sandra and Jocković, Milan and Bursać, Srđan and Ćuk, Nemanja and Jocković, Jelena and Jocić, Siniša and Nagel, Kerstin and Miladinović, Dragana",
year = "2024",
abstract = "Climate change profoundly affects crop production. Under field conditions, there is
a cycle of rainfall and rainless periods. The intervals between rainfalls have become
prolonged in certain growing areas due to climate change leading to a significant reduction in
crop production. The ability of crops to recover from drought stress depends on the species,
genotype, and the duration and severity of drought stress. Sunflowers are particularly
sensitive to drought at the germination stage. Therefore, this study aimed to develop a test to
assess the capacity of sunflower to recover from stress at the initial developmental stage. The
test was condected in rhizotrons to monitor root growth in controlled conditions. After 7 days
of drought stress, plants were re-watered to reach the control's gravimetric water content (65%
qwc). Re-watering in rhizotrons can be challenging due to the surface depth ratio, which
hinders the uniform distribution of water. To address this, we introduced a novel slow rewatering method, facilitating a more homogeneous increase in soil water content throughout
the rhizotron. For developing this test, we selected a drought-sensitive sunflower line,
subjected it to drought conditions (50% gwc), and then re-watered it to observe its recovery
capacity. Root and shoot traits between control and treatment were analyzed, including total,
primary and lateral root length, root system width and depth, leaf area, and fresh and dry
shoot weight. This test will provide valuable insights into how sunflowers recover from
drought stress, which will be very helpful in breeding programs.",
publisher = "International Sunflower Association (ISA)",
journal = "Proceedings, 21st International Sunflower Conference, 20-24 August 2024, Wuyuan, China",
title = "Recuperating from stress – How does sunflower recover from drought?",
pages = "76-76",
url = "https://hdl.handle.net/21.15107/rcub_fiver_4855"
}
Radanović, A., Dedić, B., Junker-Frohn, L., Galinski, A., Cvejić, S., Jocković, M., Bursać, S., Ćuk, N., Jocković, J., Jocić, S., Nagel, K.,& Miladinović, D.. (2024). Recuperating from stress – How does sunflower recover from drought?. in Proceedings, 21st International Sunflower Conference, 20-24 August 2024, Wuyuan, China
International Sunflower Association (ISA)., 76-76.
https://hdl.handle.net/21.15107/rcub_fiver_4855
Radanović A, Dedić B, Junker-Frohn L, Galinski A, Cvejić S, Jocković M, Bursać S, Ćuk N, Jocković J, Jocić S, Nagel K, Miladinović D. Recuperating from stress – How does sunflower recover from drought?. in Proceedings, 21st International Sunflower Conference, 20-24 August 2024, Wuyuan, China. 2024;:76-76.
https://hdl.handle.net/21.15107/rcub_fiver_4855 .
Radanović, Aleksandra, Dedić, Boško, Junker-Frohn, Laura, Galinski, Anna, Cvejić, Sandra, Jocković, Milan, Bursać, Srđan, Ćuk, Nemanja, Jocković, Jelena, Jocić, Siniša, Nagel, Kerstin, Miladinović, Dragana, "Recuperating from stress – How does sunflower recover from drought?" in Proceedings, 21st International Sunflower Conference, 20-24 August 2024, Wuyuan, China (2024):76-76,
https://hdl.handle.net/21.15107/rcub_fiver_4855 .

CROPINNO - Catching Epigenetic Variations in Sunflower Drought Tolerance

Miladinović, Dragana; Radanović, Aleksandra; Varotto, Serena; Luzzi, Irene; Ronch, Alessia; Horn, Renata; Alf, Malin; Kondić-Špika, Ankica; Glogovac, Svetlana; Trkulja, Dragana; Ćeran, Marina; Rajković, Dragana; Marjanović-Jeromela, Ana; Dedić, Boško; Cvejić, Sandra; Jocić, Siniša

(Brussels : COST Association, 2024)

TY  - CONF
AU  - Miladinović, Dragana
AU  - Radanović, Aleksandra
AU  - Varotto, Serena
AU  - Luzzi, Irene
AU  - Ronch, Alessia
AU  - Horn, Renata
AU  - Alf, Malin
AU  - Kondić-Špika, Ankica
AU  - Glogovac, Svetlana
AU  - Trkulja, Dragana
AU  - Ćeran, Marina
AU  - Rajković, Dragana
AU  - Marjanović-Jeromela, Ana
AU  - Dedić, Boško
AU  - Cvejić, Sandra
AU  - Jocić, Siniša
PY  - 2024
UR  - http://fiver.ifvcns.rs/handle/123456789/4724
AB  - In the future, it is expected that integrative approaches that combine -omics technologies by using bioinformatic tools will facilitate the identification of target genes and markers for complex traits and crop adaptation to the changing environment. CROPINNO project aims to implement multi-omics tools, with emphasis on epigenomics, for increased climate resilience of sunflower, chosen model crop for the project. In order to determine epigenetic variations in sunflower drought response, effects of drought and plant recovery are analysed at chromatin and transcriptional level. Preliminary drought stress protocols that mimic field progressive stress condition were developed with the aim to characterize sunflower response to the environmental challenges at molecular level using -omics tools, such as RNA-Seq and ChIP-Seq, as well as histone modifications such as H3K4me H3K27me3. Stress experiments are performed to identify both candidate genes and their chromatin state, associated with a variable molecular response among the characterized lines and the molecular signature, in the form of a list of regulatory pathways affected.
PB  - Brussels : COST Association
C3  - Book of Abstracts, 4th EPI-CATCH Conference Epigenetic Mechanisms of Crop Adaptation to Climate Change, Novi Sad, 4-6 June 2024
T1  - CROPINNO - Catching Epigenetic Variations in Sunflower Drought Tolerance
SP  - 40
UR  - https://hdl.handle.net/21.15107/rcub_fiver_4724
ER  - 
@conference{
author = "Miladinović, Dragana and Radanović, Aleksandra and Varotto, Serena and Luzzi, Irene and Ronch, Alessia and Horn, Renata and Alf, Malin and Kondić-Špika, Ankica and Glogovac, Svetlana and Trkulja, Dragana and Ćeran, Marina and Rajković, Dragana and Marjanović-Jeromela, Ana and Dedić, Boško and Cvejić, Sandra and Jocić, Siniša",
year = "2024",
abstract = "In the future, it is expected that integrative approaches that combine -omics technologies by using bioinformatic tools will facilitate the identification of target genes and markers for complex traits and crop adaptation to the changing environment. CROPINNO project aims to implement multi-omics tools, with emphasis on epigenomics, for increased climate resilience of sunflower, chosen model crop for the project. In order to determine epigenetic variations in sunflower drought response, effects of drought and plant recovery are analysed at chromatin and transcriptional level. Preliminary drought stress protocols that mimic field progressive stress condition were developed with the aim to characterize sunflower response to the environmental challenges at molecular level using -omics tools, such as RNA-Seq and ChIP-Seq, as well as histone modifications such as H3K4me H3K27me3. Stress experiments are performed to identify both candidate genes and their chromatin state, associated with a variable molecular response among the characterized lines and the molecular signature, in the form of a list of regulatory pathways affected.",
publisher = "Brussels : COST Association",
journal = "Book of Abstracts, 4th EPI-CATCH Conference Epigenetic Mechanisms of Crop Adaptation to Climate Change, Novi Sad, 4-6 June 2024",
title = "CROPINNO - Catching Epigenetic Variations in Sunflower Drought Tolerance",
pages = "40",
url = "https://hdl.handle.net/21.15107/rcub_fiver_4724"
}
Miladinović, D., Radanović, A., Varotto, S., Luzzi, I., Ronch, A., Horn, R., Alf, M., Kondić-Špika, A., Glogovac, S., Trkulja, D., Ćeran, M., Rajković, D., Marjanović-Jeromela, A., Dedić, B., Cvejić, S.,& Jocić, S.. (2024). CROPINNO - Catching Epigenetic Variations in Sunflower Drought Tolerance. in Book of Abstracts, 4th EPI-CATCH Conference Epigenetic Mechanisms of Crop Adaptation to Climate Change, Novi Sad, 4-6 June 2024
Brussels : COST Association., 40.
https://hdl.handle.net/21.15107/rcub_fiver_4724
Miladinović D, Radanović A, Varotto S, Luzzi I, Ronch A, Horn R, Alf M, Kondić-Špika A, Glogovac S, Trkulja D, Ćeran M, Rajković D, Marjanović-Jeromela A, Dedić B, Cvejić S, Jocić S. CROPINNO - Catching Epigenetic Variations in Sunflower Drought Tolerance. in Book of Abstracts, 4th EPI-CATCH Conference Epigenetic Mechanisms of Crop Adaptation to Climate Change, Novi Sad, 4-6 June 2024. 2024;:40.
https://hdl.handle.net/21.15107/rcub_fiver_4724 .
Miladinović, Dragana, Radanović, Aleksandra, Varotto, Serena, Luzzi, Irene, Ronch, Alessia, Horn, Renata, Alf, Malin, Kondić-Špika, Ankica, Glogovac, Svetlana, Trkulja, Dragana, Ćeran, Marina, Rajković, Dragana, Marjanović-Jeromela, Ana, Dedić, Boško, Cvejić, Sandra, Jocić, Siniša, "CROPINNO - Catching Epigenetic Variations in Sunflower Drought Tolerance" in Book of Abstracts, 4th EPI-CATCH Conference Epigenetic Mechanisms of Crop Adaptation to Climate Change, Novi Sad, 4-6 June 2024 (2024):40,
https://hdl.handle.net/21.15107/rcub_fiver_4724 .

Transfer Learning in Multimodal Sunflower Drought Stress Detection

Lazić, Olivera; Cvejić, Sandra; Dedić, Boško; Kupusinac, Aleksandar; Jocić, Siniša; Miladinović, Dragana

(Basel : MDPI, 2024)

TY  - JOUR
AU  - Lazić, Olivera
AU  - Cvejić, Sandra
AU  - Dedić, Boško
AU  - Kupusinac, Aleksandar
AU  - Jocić, Siniša
AU  - Miladinović, Dragana
PY  - 2024
UR  - http://fiver.ifvcns.rs/handle/123456789/4807
AB  - Efficient water supply and timely detection of drought stress in crops to increase yields is an important task considering that agriculture is the primary consumer of water globally. This is particularly significant for plants such as sunflowers, which are an important source of quality edible oils, essential for human nutrition. Traditional detection methods are labor-intensive, time-consuming, and rely on advanced sensor technologies. We introduce an innovative approach based on neural networks and transfer learning for drought stress detection using a novel dataset including 209 non-invasive rhizotron images and 385 images of manually cleaned sections of sunflowers, subjected to normal watering or water stress. We used five neural network models: VGG16, VGG19, InceptionV3, DenseNet, and MobileNet, pre-trained on the ImageNet dataset, whose performance was compared to select the most efficient architecture. Accordingly, the most efficient model, MobileNet, was further refined using different data augmentation mechanisms. The introduction of targeted data augmentation and the use of grayscale images proved to be effective, demonstrating improved results, with an F1 score and an accuracy of 0.95. This approach encourages advances in water stress detection, highlighting the value of artificial intelligence in improving crop health monitoring and management for more resilient agricultural practices.
PB  - Basel : MDPI
T2  - Applied Sciences
T1  - Transfer Learning in Multimodal Sunflower Drought Stress Detection
IS  - 14
SP  - 6034
VL  - 14
DO  - 10.3390/app14146034
ER  - 
@article{
author = "Lazić, Olivera and Cvejić, Sandra and Dedić, Boško and Kupusinac, Aleksandar and Jocić, Siniša and Miladinović, Dragana",
year = "2024",
abstract = "Efficient water supply and timely detection of drought stress in crops to increase yields is an important task considering that agriculture is the primary consumer of water globally. This is particularly significant for plants such as sunflowers, which are an important source of quality edible oils, essential for human nutrition. Traditional detection methods are labor-intensive, time-consuming, and rely on advanced sensor technologies. We introduce an innovative approach based on neural networks and transfer learning for drought stress detection using a novel dataset including 209 non-invasive rhizotron images and 385 images of manually cleaned sections of sunflowers, subjected to normal watering or water stress. We used five neural network models: VGG16, VGG19, InceptionV3, DenseNet, and MobileNet, pre-trained on the ImageNet dataset, whose performance was compared to select the most efficient architecture. Accordingly, the most efficient model, MobileNet, was further refined using different data augmentation mechanisms. The introduction of targeted data augmentation and the use of grayscale images proved to be effective, demonstrating improved results, with an F1 score and an accuracy of 0.95. This approach encourages advances in water stress detection, highlighting the value of artificial intelligence in improving crop health monitoring and management for more resilient agricultural practices.",
publisher = "Basel : MDPI",
journal = "Applied Sciences",
title = "Transfer Learning in Multimodal Sunflower Drought Stress Detection",
number = "14",
pages = "6034",
volume = "14",
doi = "10.3390/app14146034"
}
Lazić, O., Cvejić, S., Dedić, B., Kupusinac, A., Jocić, S.,& Miladinović, D.. (2024). Transfer Learning in Multimodal Sunflower Drought Stress Detection. in Applied Sciences
Basel : MDPI., 14(14), 6034.
https://doi.org/10.3390/app14146034
Lazić O, Cvejić S, Dedić B, Kupusinac A, Jocić S, Miladinović D. Transfer Learning in Multimodal Sunflower Drought Stress Detection. in Applied Sciences. 2024;14(14):6034.
doi:10.3390/app14146034 .
Lazić, Olivera, Cvejić, Sandra, Dedić, Boško, Kupusinac, Aleksandar, Jocić, Siniša, Miladinović, Dragana, "Transfer Learning in Multimodal Sunflower Drought Stress Detection" in Applied Sciences, 14, no. 14 (2024):6034,
https://doi.org/10.3390/app14146034 . .
1

Broomrape in Serbia

Dedić, Boško; Jun, Zhao; Miladinović, Dragana; Jocić, Siniša; Miklič, Vladimir; Radanović, Aleksandra; Cvejić, Sandra; Lan, Jing; Zhou, Hongyou; Zhang, Jian; Zhang, Zhiwei; Yang, Jiale

(International Sunflower Association (ISA), 2024)

TY  - CONF
AU  - Dedić, Boško
AU  - Jun, Zhao
AU  - Miladinović, Dragana
AU  - Jocić, Siniša
AU  - Miklič, Vladimir
AU  - Radanović, Aleksandra
AU  - Cvejić, Sandra
AU  - Lan, Jing
AU  - Zhou, Hongyou
AU  - Zhang, Jian
AU  - Zhang, Zhiwei
AU  - Yang, Jiale
PY  - 2024
UR  - http://fiver.ifvcns.rs/handle/123456789/4858
AB  - Broomrape (Orobanche cumana) is a continuous threat to sunflower production.
Awidely used method to control this parasitic plant is the development of resistant hybrids.
The control method itself requires knowledge of parasite virulence present in the particular
region. Virulence determination is based on the reaction of differential sunflower genotypes
and several genotypes are in use by researchers to determine broomrape race labeled with
capital Latin letters. In Serbia, broomrape is present in some sunflower planting regions.
Recently, researched limited number of broomrape populations indicated a sparse presence of
race F. In this research over 200 sunflower fields were surveyed for the presence of the
parasites. Broomrape plants were collected, air dried and labeled. Parasite virulence was
determined using inbred lines AD-66, LC1002, LC1003, LC1093, NR5, and P96, to identify
race type based on the reaction of sunflower to broomrape. Experiments were conducted in
semi- controlled greenhouse conditions by growing differential lines in pots containing
substrate with broomrape seeds. Reaction of each line was determined based on broomrape
presence on the host root. Broomrape was found in 88 sunflower fields. In majority of
surveyed fields, parasite was found sparsely ranging from few individuals to small patches of
infested sunflower plants. Results have confirmed the presence of race F based on the
susceptibility of line NR5 and the presence of race G based on the susceptibility of line P96.
Further research will include increased number of genotypes to assess variability in
broomrape virulence and experiments for genetic diversity determination of parasitic
populations of various geographical origin.
PB  - International Sunflower Association (ISA)
C3  - Proceedings, 21st International Sunflower Conference, 20-24 August 2024, Wuyuan, China
T1  - Broomrape in Serbia
EP  - 91
SP  - 91
UR  - https://hdl.handle.net/21.15107/rcub_fiver_4858
ER  - 
@conference{
author = "Dedić, Boško and Jun, Zhao and Miladinović, Dragana and Jocić, Siniša and Miklič, Vladimir and Radanović, Aleksandra and Cvejić, Sandra and Lan, Jing and Zhou, Hongyou and Zhang, Jian and Zhang, Zhiwei and Yang, Jiale",
year = "2024",
abstract = "Broomrape (Orobanche cumana) is a continuous threat to sunflower production.
Awidely used method to control this parasitic plant is the development of resistant hybrids.
The control method itself requires knowledge of parasite virulence present in the particular
region. Virulence determination is based on the reaction of differential sunflower genotypes
and several genotypes are in use by researchers to determine broomrape race labeled with
capital Latin letters. In Serbia, broomrape is present in some sunflower planting regions.
Recently, researched limited number of broomrape populations indicated a sparse presence of
race F. In this research over 200 sunflower fields were surveyed for the presence of the
parasites. Broomrape plants were collected, air dried and labeled. Parasite virulence was
determined using inbred lines AD-66, LC1002, LC1003, LC1093, NR5, and P96, to identify
race type based on the reaction of sunflower to broomrape. Experiments were conducted in
semi- controlled greenhouse conditions by growing differential lines in pots containing
substrate with broomrape seeds. Reaction of each line was determined based on broomrape
presence on the host root. Broomrape was found in 88 sunflower fields. In majority of
surveyed fields, parasite was found sparsely ranging from few individuals to small patches of
infested sunflower plants. Results have confirmed the presence of race F based on the
susceptibility of line NR5 and the presence of race G based on the susceptibility of line P96.
Further research will include increased number of genotypes to assess variability in
broomrape virulence and experiments for genetic diversity determination of parasitic
populations of various geographical origin.",
publisher = "International Sunflower Association (ISA)",
journal = "Proceedings, 21st International Sunflower Conference, 20-24 August 2024, Wuyuan, China",
title = "Broomrape in Serbia",
pages = "91-91",
url = "https://hdl.handle.net/21.15107/rcub_fiver_4858"
}
Dedić, B., Jun, Z., Miladinović, D., Jocić, S., Miklič, V., Radanović, A., Cvejić, S., Lan, J., Zhou, H., Zhang, J., Zhang, Z.,& Yang, J.. (2024). Broomrape in Serbia. in Proceedings, 21st International Sunflower Conference, 20-24 August 2024, Wuyuan, China
International Sunflower Association (ISA)., 91-91.
https://hdl.handle.net/21.15107/rcub_fiver_4858
Dedić B, Jun Z, Miladinović D, Jocić S, Miklič V, Radanović A, Cvejić S, Lan J, Zhou H, Zhang J, Zhang Z, Yang J. Broomrape in Serbia. in Proceedings, 21st International Sunflower Conference, 20-24 August 2024, Wuyuan, China. 2024;:91-91.
https://hdl.handle.net/21.15107/rcub_fiver_4858 .
Dedić, Boško, Jun, Zhao, Miladinović, Dragana, Jocić, Siniša, Miklič, Vladimir, Radanović, Aleksandra, Cvejić, Sandra, Lan, Jing, Zhou, Hongyou, Zhang, Jian, Zhang, Zhiwei, Yang, Jiale, "Broomrape in Serbia" in Proceedings, 21st International Sunflower Conference, 20-24 August 2024, Wuyuan, China (2024):91-91,
https://hdl.handle.net/21.15107/rcub_fiver_4858 .

Resistance of IFVCNS inbred lines to race F with origin from Spain

Dedić, Boško; Miladinović, Dragana; Jocić, Siniša; Miklič, Vladimir; Radanović, Aleksandra; Cvejić, Sandra; García-Carneros, Ana Belén; Molinero-Ruiz, Leire

(International Sunflower Association (ISA), 2024)

TY  - CONF
AU  - Dedić, Boško
AU  - Miladinović, Dragana
AU  - Jocić, Siniša
AU  - Miklič, Vladimir
AU  - Radanović, Aleksandra
AU  - Cvejić, Sandra
AU  - García-Carneros, Ana Belén
AU  - Molinero-Ruiz, Leire
PY  - 2024
UR  - http://fiver.ifvcns.rs/handle/123456789/4859
AB  - Broomrape (Orobanche cumana) is one of the most important constraints for 
sunflower croping. Parasite populations are segregating on virulence criterion and different 
races are described. Breeding efforts directed for development of resistant genotypes face 
challenges such as genetically diverse broomrape populations and broomrape of different 
virulence. One strategy to minimize the impact of broomrape virulence variability in breeding 
for resistance is to test sunflower genotypes resistance with broomrape with different origins. 
In this study, a selection of 24 IFVCNS inbred lines based on resistance to dominant 
broomrape populations in Serbia was tested to broomrape race F, collected in a sunflower 
field of Andalusia region in Spain. Six-week greenhouse pot experiments were conducted in 
CSIC, Spain. The line B117, used as susceptible control, had broomrape on all tested plants. 
For 13 genotypes no broomrape was present on roots, 10 genotypes had broomrape attached 
on part of tested plants, and broomrape incidence on one genotype was 100%. Inbred lines 
were analyzed on the basis of genetic background and importance in breeding. In the group of 
AB-OR lines, with origins from Helianthus divaricarus, 7 out of 9 lines were completely 
resistant. Inbred line HA-267, with a single recessive mode of resistance inheritance, was 
confirmed resistant. Inbred lines, RUB-3 and SOL-SU-26 were also completely resistant to 
broomrape. The results indicate the importance of using different broomrape populations and 
conducting multi-location experiments to enhance the breeding process together with using 
various sources of resistance. Selection of resistance genotypes will be further tested for their 
resistance to broomrape populations and resilience to adverse enviromental conditions.
PB  - International Sunflower Association (ISA)
C3  - Proceedings, 21st International Sunflower Conference, 20-24 August 2024, Wuyuan, China
T1  - Resistance of IFVCNS inbred lines to race F with origin from Spain
EP  - 92
SP  - 92
UR  - https://hdl.handle.net/21.15107/rcub_fiver_4859
ER  - 
@conference{
author = "Dedić, Boško and Miladinović, Dragana and Jocić, Siniša and Miklič, Vladimir and Radanović, Aleksandra and Cvejić, Sandra and García-Carneros, Ana Belén and Molinero-Ruiz, Leire",
year = "2024",
abstract = "Broomrape (Orobanche cumana) is one of the most important constraints for 
sunflower croping. Parasite populations are segregating on virulence criterion and different 
races are described. Breeding efforts directed for development of resistant genotypes face 
challenges such as genetically diverse broomrape populations and broomrape of different 
virulence. One strategy to minimize the impact of broomrape virulence variability in breeding 
for resistance is to test sunflower genotypes resistance with broomrape with different origins. 
In this study, a selection of 24 IFVCNS inbred lines based on resistance to dominant 
broomrape populations in Serbia was tested to broomrape race F, collected in a sunflower 
field of Andalusia region in Spain. Six-week greenhouse pot experiments were conducted in 
CSIC, Spain. The line B117, used as susceptible control, had broomrape on all tested plants. 
For 13 genotypes no broomrape was present on roots, 10 genotypes had broomrape attached 
on part of tested plants, and broomrape incidence on one genotype was 100%. Inbred lines 
were analyzed on the basis of genetic background and importance in breeding. In the group of 
AB-OR lines, with origins from Helianthus divaricarus, 7 out of 9 lines were completely 
resistant. Inbred line HA-267, with a single recessive mode of resistance inheritance, was 
confirmed resistant. Inbred lines, RUB-3 and SOL-SU-26 were also completely resistant to 
broomrape. The results indicate the importance of using different broomrape populations and 
conducting multi-location experiments to enhance the breeding process together with using 
various sources of resistance. Selection of resistance genotypes will be further tested for their 
resistance to broomrape populations and resilience to adverse enviromental conditions.",
publisher = "International Sunflower Association (ISA)",
journal = "Proceedings, 21st International Sunflower Conference, 20-24 August 2024, Wuyuan, China",
title = "Resistance of IFVCNS inbred lines to race F with origin from Spain",
pages = "92-92",
url = "https://hdl.handle.net/21.15107/rcub_fiver_4859"
}
Dedić, B., Miladinović, D., Jocić, S., Miklič, V., Radanović, A., Cvejić, S., García-Carneros, A. B.,& Molinero-Ruiz, L.. (2024). Resistance of IFVCNS inbred lines to race F with origin from Spain. in Proceedings, 21st International Sunflower Conference, 20-24 August 2024, Wuyuan, China
International Sunflower Association (ISA)., 92-92.
https://hdl.handle.net/21.15107/rcub_fiver_4859
Dedić B, Miladinović D, Jocić S, Miklič V, Radanović A, Cvejić S, García-Carneros AB, Molinero-Ruiz L. Resistance of IFVCNS inbred lines to race F with origin from Spain. in Proceedings, 21st International Sunflower Conference, 20-24 August 2024, Wuyuan, China. 2024;:92-92.
https://hdl.handle.net/21.15107/rcub_fiver_4859 .
Dedić, Boško, Miladinović, Dragana, Jocić, Siniša, Miklič, Vladimir, Radanović, Aleksandra, Cvejić, Sandra, García-Carneros, Ana Belén, Molinero-Ruiz, Leire, "Resistance of IFVCNS inbred lines to race F with origin from Spain" in Proceedings, 21st International Sunflower Conference, 20-24 August 2024, Wuyuan, China (2024):92-92,
https://hdl.handle.net/21.15107/rcub_fiver_4859 .

Genomics-assisted speed breeding for crop improvement: present and future

Ćeran, Marina; Miladinović, Dragana; Đorđević, Vuk; Trkulja, Dragana; Radanović, Aleksandra; Glogovac, Svetlana; Kondić-Špika, Ankica

(Frontiers Media S.A., 2024)

TY  - JOUR
AU  - Ćeran, Marina
AU  - Miladinović, Dragana
AU  - Đorđević, Vuk
AU  - Trkulja, Dragana
AU  - Radanović, Aleksandra
AU  - Glogovac, Svetlana
AU  - Kondić-Špika, Ankica
PY  - 2024
UR  - http://fiver.ifvcns.rs/handle/123456789/4477
AB  - Global agricultural productivity and food security are threatened by climate change, the growing world population, and the difficulties posed by the pandemic era. To overcome these challenges and meet food requirements, breeders have applied and implemented different advanced techniques that accelerate plant development and increase crop selection effectiveness. However, only two or three generations could be advanced annually using these approaches. Speed breeding (SB) is an innovative and promising technology to develop new varieties in a shorter time, utilizing the manipulation of controlled environmental conditions. This strategy can reduce the generation length from 2.5 to 5 times compared to traditional methods and accelerate generation advancement and crop improvement, accommodating multiple generations of crops per year. Beside long breeding cycles, SB can address other challenges related to traditional breeding, such as response to environmental conditions, disease and pest management, genetic uniformity, and improving resource efficiency. Combining genomic approaches such as marker-assisted selection, genomic selection, and genome editing with SB offers the capacity to further enhance breeding efficiency by reducing breeding cycle time, enabling early phenotypic assessment, efficient resource utilization, and increasing selection accuracy and genetic gain per year. Genomics-assisted SB holds the potential to revolutionize plant breeding by significantly accelerating the identification and selection of desirable genetic traits, expediting the development of improved crop varieties crucial for addressing global agricultural challenges.
PB  - Frontiers Media S.A.
T2  - Frontiers in Sustainable Food Systems
T1  - Genomics-assisted speed breeding for crop improvement: present and future
SP  - 1383302
VL  - 8
DO  - 10.3389/fsufs.2024.1383302
ER  - 
@article{
author = "Ćeran, Marina and Miladinović, Dragana and Đorđević, Vuk and Trkulja, Dragana and Radanović, Aleksandra and Glogovac, Svetlana and Kondić-Špika, Ankica",
year = "2024",
abstract = "Global agricultural productivity and food security are threatened by climate change, the growing world population, and the difficulties posed by the pandemic era. To overcome these challenges and meet food requirements, breeders have applied and implemented different advanced techniques that accelerate plant development and increase crop selection effectiveness. However, only two or three generations could be advanced annually using these approaches. Speed breeding (SB) is an innovative and promising technology to develop new varieties in a shorter time, utilizing the manipulation of controlled environmental conditions. This strategy can reduce the generation length from 2.5 to 5 times compared to traditional methods and accelerate generation advancement and crop improvement, accommodating multiple generations of crops per year. Beside long breeding cycles, SB can address other challenges related to traditional breeding, such as response to environmental conditions, disease and pest management, genetic uniformity, and improving resource efficiency. Combining genomic approaches such as marker-assisted selection, genomic selection, and genome editing with SB offers the capacity to further enhance breeding efficiency by reducing breeding cycle time, enabling early phenotypic assessment, efficient resource utilization, and increasing selection accuracy and genetic gain per year. Genomics-assisted SB holds the potential to revolutionize plant breeding by significantly accelerating the identification and selection of desirable genetic traits, expediting the development of improved crop varieties crucial for addressing global agricultural challenges.",
publisher = "Frontiers Media S.A.",
journal = "Frontiers in Sustainable Food Systems",
title = "Genomics-assisted speed breeding for crop improvement: present and future",
pages = "1383302",
volume = "8",
doi = "10.3389/fsufs.2024.1383302"
}
Ćeran, M., Miladinović, D., Đorđević, V., Trkulja, D., Radanović, A., Glogovac, S.,& Kondić-Špika, A.. (2024). Genomics-assisted speed breeding for crop improvement: present and future. in Frontiers in Sustainable Food Systems
Frontiers Media S.A.., 8, 1383302.
https://doi.org/10.3389/fsufs.2024.1383302
Ćeran M, Miladinović D, Đorđević V, Trkulja D, Radanović A, Glogovac S, Kondić-Špika A. Genomics-assisted speed breeding for crop improvement: present and future. in Frontiers in Sustainable Food Systems. 2024;8:1383302.
doi:10.3389/fsufs.2024.1383302 .
Ćeran, Marina, Miladinović, Dragana, Đorđević, Vuk, Trkulja, Dragana, Radanović, Aleksandra, Glogovac, Svetlana, Kondić-Špika, Ankica, "Genomics-assisted speed breeding for crop improvement: present and future" in Frontiers in Sustainable Food Systems, 8 (2024):1383302,
https://doi.org/10.3389/fsufs.2024.1383302 . .
1

Oprašivanje suncokreta kao uslov uspešne proizvodnje

Miklič, Vladimir; Jocić, Siniša; Dušanić, Nenad; Hladni, Nada; Ostojić, Branislav; Radić, Velimir; Krstić, Miloš; Miladinović, Dragana

(Novi Sad : Univerzitet u Novom Sadu, Tehnološki fakultet, 2024)

TY  - CONF
AU  - Miklič, Vladimir
AU  - Jocić, Siniša
AU  - Dušanić, Nenad
AU  - Hladni, Nada
AU  - Ostojić, Branislav
AU  - Radić, Velimir
AU  - Krstić, Miloš
AU  - Miladinović, Dragana
PY  - 2024
UR  - http://fiver.ifvcns.rs/handle/123456789/4707
AB  - Suncokret je stranooplodna entomofilna biljka i za uspešnu proizvodnju semena neophodno je prisustvo polinatora. Ispitivan je uticaj uslova oplodnje na elemente prinosa. U slobodnoj oplodnji prinos semena po glavi je u proseku za 12 genotipova u 2 godine ispitivanja bio za 72,13% veći u odnosu na uslove samooplodnje, masa 1000 semena je bila za 10,08% manja a sadržaj ulja veći za gotovo 6%. Uslovi oplodnje značajno utiču na sadržaj ulja što potvrđuje i Spirmanov koeficijent korelacije rangova genotipova po sadržaju ulja u dva tipa oplodnje koji je veoma nizak (Sccr = 0,1119). Na posetu utiču sadržaj nektara, količina i kvalitet polena, dužina krunice, boja cveta i drugi faktori atraktivnosti, ali je veći uticaj faktora spoljašnje sredine i primenjenih agrotehničkih mera.
AB  - The sunflower is an entomophilous plant, and the presence of pollinators is necessary for successful seed production. The influence of fertilization conditions on yield elements was examined. In open pollination, the seed yield per head was on average 72.13% higher for 12 genotypes in 2 years of testing compared to self-fertilization conditions, the weight of 1000 seeds was 10.08% lower and the oil content was almost 6% higher. Fertilization conditions significantly affect the oil content, which is confirmed by Spearman's coefficient of correlation of genotype ranks by oil content in two types of fertilization, which is very low (Scer = 0.1119). The visit is influenced by the content of nectar, the quantity and quality of pollen, the length of the corolla, the color of the flower and other factors of attractiveness, but the factors of the external environment and applied agrotechnical measures have a greater influence.
PB  - Novi Sad : Univerzitet u Novom Sadu, Tehnološki fakultet
PB  - Novi Sad : Institut za ratarstvo i povrtarstvo
PB  - Novi Sad : Industrijsko bilje
C3  - Zbornik radova, 65. Savetovanje industrije ulja Proizvodnja i prerada uljarica, Herceg Novi, 23-28. jun 2024.
T1  - Oprašivanje suncokreta kao uslov uspešne proizvodnje
T1  - Sunflower pollination as a condition for successful production
EP  - 27
SP  - 22
UR  - https://hdl.handle.net/21.15107/rcub_fiver_4707
ER  - 
@conference{
author = "Miklič, Vladimir and Jocić, Siniša and Dušanić, Nenad and Hladni, Nada and Ostojić, Branislav and Radić, Velimir and Krstić, Miloš and Miladinović, Dragana",
year = "2024",
abstract = "Suncokret je stranooplodna entomofilna biljka i za uspešnu proizvodnju semena neophodno je prisustvo polinatora. Ispitivan je uticaj uslova oplodnje na elemente prinosa. U slobodnoj oplodnji prinos semena po glavi je u proseku za 12 genotipova u 2 godine ispitivanja bio za 72,13% veći u odnosu na uslove samooplodnje, masa 1000 semena je bila za 10,08% manja a sadržaj ulja veći za gotovo 6%. Uslovi oplodnje značajno utiču na sadržaj ulja što potvrđuje i Spirmanov koeficijent korelacije rangova genotipova po sadržaju ulja u dva tipa oplodnje koji je veoma nizak (Sccr = 0,1119). Na posetu utiču sadržaj nektara, količina i kvalitet polena, dužina krunice, boja cveta i drugi faktori atraktivnosti, ali je veći uticaj faktora spoljašnje sredine i primenjenih agrotehničkih mera., The sunflower is an entomophilous plant, and the presence of pollinators is necessary for successful seed production. The influence of fertilization conditions on yield elements was examined. In open pollination, the seed yield per head was on average 72.13% higher for 12 genotypes in 2 years of testing compared to self-fertilization conditions, the weight of 1000 seeds was 10.08% lower and the oil content was almost 6% higher. Fertilization conditions significantly affect the oil content, which is confirmed by Spearman's coefficient of correlation of genotype ranks by oil content in two types of fertilization, which is very low (Scer = 0.1119). The visit is influenced by the content of nectar, the quantity and quality of pollen, the length of the corolla, the color of the flower and other factors of attractiveness, but the factors of the external environment and applied agrotechnical measures have a greater influence.",
publisher = "Novi Sad : Univerzitet u Novom Sadu, Tehnološki fakultet, Novi Sad : Institut za ratarstvo i povrtarstvo, Novi Sad : Industrijsko bilje",
journal = "Zbornik radova, 65. Savetovanje industrije ulja Proizvodnja i prerada uljarica, Herceg Novi, 23-28. jun 2024.",
title = "Oprašivanje suncokreta kao uslov uspešne proizvodnje, Sunflower pollination as a condition for successful production",
pages = "27-22",
url = "https://hdl.handle.net/21.15107/rcub_fiver_4707"
}
Miklič, V., Jocić, S., Dušanić, N., Hladni, N., Ostojić, B., Radić, V., Krstić, M.,& Miladinović, D.. (2024). Oprašivanje suncokreta kao uslov uspešne proizvodnje. in Zbornik radova, 65. Savetovanje industrije ulja Proizvodnja i prerada uljarica, Herceg Novi, 23-28. jun 2024.
Novi Sad : Univerzitet u Novom Sadu, Tehnološki fakultet., 22-27.
https://hdl.handle.net/21.15107/rcub_fiver_4707
Miklič V, Jocić S, Dušanić N, Hladni N, Ostojić B, Radić V, Krstić M, Miladinović D. Oprašivanje suncokreta kao uslov uspešne proizvodnje. in Zbornik radova, 65. Savetovanje industrije ulja Proizvodnja i prerada uljarica, Herceg Novi, 23-28. jun 2024.. 2024;:22-27.
https://hdl.handle.net/21.15107/rcub_fiver_4707 .
Miklič, Vladimir, Jocić, Siniša, Dušanić, Nenad, Hladni, Nada, Ostojić, Branislav, Radić, Velimir, Krstić, Miloš, Miladinović, Dragana, "Oprašivanje suncokreta kao uslov uspešne proizvodnje" in Zbornik radova, 65. Savetovanje industrije ulja Proizvodnja i prerada uljarica, Herceg Novi, 23-28. jun 2024. (2024):22-27,
https://hdl.handle.net/21.15107/rcub_fiver_4707 .

A novel AI-based technique for 3d shape acquisition of confectionery sunflower seeds and associated shape descriptors

Hladni, Nada; Kisačanin, Branislav; Petrović, Veljko; Dutta, Ashmit; Miklič, Vladimir; Miladinović, Dragana

(International Sunflower Association (ISA), 2024)

TY  - CONF
AU  - Hladni, Nada
AU  - Kisačanin, Branislav
AU  - Petrović, Veljko
AU  - Dutta, Ashmit
AU  - Miklič, Vladimir
AU  - Miladinović, Dragana
PY  - 2024
UR  - http://fiver.ifvcns.rs/handle/123456789/4861
AB  - Evaluating the qualities of sunflower hybrids is partially based on laboratory analysis which is amenable to strict quantification and statistical and computer analysis. However, the insignificant amount of information is not gleaned from direct visual observation which is partially qualitative and where it is quantitative, it is laborious and prone to human error. To remedy this state of affairs, we have begun work on an automated, AI-powered analysis workflow for visual confectionary sunflower seed evaluation. We foresee that these advances can be used both to increase efficiency of dehulling via model machine and helping to generate novel varieties with novel seed shapes. This advancement should be possible by combining automated shape analysis, genomic analysis, and the development of generative AI models which create plausible simulations of seed geometry under known genetic and environmental conditions. In this paper we address the first step of 3D shape analysis: 3D shape acquisition. Traditional 3D shape acquisition techniques require relatively expensive equipment, consisting of multiple carefully calibrated cameras. To reduce cost and guarantee the potential for ubiquity of this approach, we propose an alternative approach based on cheap image acquisition technology and AI-powered 3D geometry reconstruction.
PB  - International Sunflower Association (ISA)
C3  - Proceedings, 21st International Sunflower Conference, 20-24 August 2024, Wuyuan, China
T1  - A novel AI-based technique for 3d shape acquisition of confectionery sunflower seeds  and associated shape descriptors
EP  - 108
SP  - 107
UR  - https://hdl.handle.net/21.15107/rcub_fiver_4861
ER  - 
@conference{
author = "Hladni, Nada and Kisačanin, Branislav and Petrović, Veljko and Dutta, Ashmit and Miklič, Vladimir and Miladinović, Dragana",
year = "2024",
abstract = "Evaluating the qualities of sunflower hybrids is partially based on laboratory analysis which is amenable to strict quantification and statistical and computer analysis. However, the insignificant amount of information is not gleaned from direct visual observation which is partially qualitative and where it is quantitative, it is laborious and prone to human error. To remedy this state of affairs, we have begun work on an automated, AI-powered analysis workflow for visual confectionary sunflower seed evaluation. We foresee that these advances can be used both to increase efficiency of dehulling via model machine and helping to generate novel varieties with novel seed shapes. This advancement should be possible by combining automated shape analysis, genomic analysis, and the development of generative AI models which create plausible simulations of seed geometry under known genetic and environmental conditions. In this paper we address the first step of 3D shape analysis: 3D shape acquisition. Traditional 3D shape acquisition techniques require relatively expensive equipment, consisting of multiple carefully calibrated cameras. To reduce cost and guarantee the potential for ubiquity of this approach, we propose an alternative approach based on cheap image acquisition technology and AI-powered 3D geometry reconstruction.",
publisher = "International Sunflower Association (ISA)",
journal = "Proceedings, 21st International Sunflower Conference, 20-24 August 2024, Wuyuan, China",
title = "A novel AI-based technique for 3d shape acquisition of confectionery sunflower seeds  and associated shape descriptors",
pages = "108-107",
url = "https://hdl.handle.net/21.15107/rcub_fiver_4861"
}
Hladni, N., Kisačanin, B., Petrović, V., Dutta, A., Miklič, V.,& Miladinović, D.. (2024). A novel AI-based technique for 3d shape acquisition of confectionery sunflower seeds  and associated shape descriptors. in Proceedings, 21st International Sunflower Conference, 20-24 August 2024, Wuyuan, China
International Sunflower Association (ISA)., 107-108.
https://hdl.handle.net/21.15107/rcub_fiver_4861
Hladni N, Kisačanin B, Petrović V, Dutta A, Miklič V, Miladinović D. A novel AI-based technique for 3d shape acquisition of confectionery sunflower seeds  and associated shape descriptors. in Proceedings, 21st International Sunflower Conference, 20-24 August 2024, Wuyuan, China. 2024;:107-108.
https://hdl.handle.net/21.15107/rcub_fiver_4861 .
Hladni, Nada, Kisačanin, Branislav, Petrović, Veljko, Dutta, Ashmit, Miklič, Vladimir, Miladinović, Dragana, "A novel AI-based technique for 3d shape acquisition of confectionery sunflower seeds  and associated shape descriptors" in Proceedings, 21st International Sunflower Conference, 20-24 August 2024, Wuyuan, China (2024):107-108,
https://hdl.handle.net/21.15107/rcub_fiver_4861 .

Thermal treatments in controlling Plodia interpunctella (Lepidoptera: Pyralidae) on sunflower seeds and their effect on seed vitality

Gvozdenac, Sonja; Prvulović, Dejan; Lozanov-Crvenković, Zagorka; Štajner-Papuga, Ivana; Ovuka, Jelena; Krstić, Miloš; Tanasković, Snežana; Vukajlović, Filip

(Elsevier, 2024)

TY  - JOUR
AU  - Gvozdenac, Sonja
AU  - Prvulović, Dejan
AU  - Lozanov-Crvenković, Zagorka
AU  - Štajner-Papuga, Ivana
AU  - Ovuka, Jelena
AU  - Krstić, Miloš
AU  - Tanasković, Snežana
AU  - Vukajlović, Filip
PY  - 2024
UR  - http://fiver.ifvcns.rs/handle/123456789/4754
AB  - This work aimed to assess the potential of thermal treatments for controlling P. interpunctella on sunflower seeds, based on its tolerance to high/elevated temperatures and effect on seed vitality. The tests involved mature larvae (L5) and pupae, exposed to 35, 40, 42, 44, 45, 50, 55 and 60 °C, for 15 and 30 min, and 1, 2, 6, 24, 48 h. Larval mortality and survival, Probyt analysis, developmental dynamics, longevity analysis, progeny production and the effect on sunflower seed vitality (germination energy and germination) were assessed. Larval mortality of 75.9% was achieved after 30 min of exposure at 44 °C, 77.0% at 45 °C after 15 min, and 100% after 45 min. At 60 and 65 °C total mortality was achieved already after 15 min of exposure. Lethal exposure time (LT50) needed to kill 50% of larval population was 15 min at 44.2 °C, 30 min at 43.3 °C, 45 min at 42.1 °C or 41.8 °C at 60 min, respectively. LT90 can be achieved after 15 min of exposure at 45.2 °C, 30 min at 44.3 °C, 45 min at 43.3 °C, or 60 min at 42.1 °C. Pupal LT50 was 15 min at 56.7 °C, 30 min at 53.1 °C, 45 min at 52.4 °C or 60 min at 52.2 °C, while LT90 was 15 min at 59.7 °C, 30 min at 56.3 °C, 45 min at 56.1 °C or 60 min at 55.6 °C. The fastest development, and the highest progeny production was in treatments when the parenteral population was exposed to 40 °C for 1, 2 and 6 h. The developmental duration was significantly shortened when parenteral population was exposed to 40 °C for 48 h. The temperature and exposure did affect the duration of the adult life stage only when exposed for 2, 3, 6, 24 and 48 h to 40 °C. The germination of sunflower seed (86.7%) was inhibited by heat at 45 °C when exposed for 24 h.
PB  - Elsevier
T2  - Journal of Stored Products Research
T1  - Thermal treatments in controlling Plodia interpunctella (Lepidoptera: Pyralidae) on sunflower seeds and their effect on seed vitality
SP  - 102384
VL  - 108
DO  - 10.1016/j.jspr.2024.102384
ER  - 
@article{
author = "Gvozdenac, Sonja and Prvulović, Dejan and Lozanov-Crvenković, Zagorka and Štajner-Papuga, Ivana and Ovuka, Jelena and Krstić, Miloš and Tanasković, Snežana and Vukajlović, Filip",
year = "2024",
abstract = "This work aimed to assess the potential of thermal treatments for controlling P. interpunctella on sunflower seeds, based on its tolerance to high/elevated temperatures and effect on seed vitality. The tests involved mature larvae (L5) and pupae, exposed to 35, 40, 42, 44, 45, 50, 55 and 60 °C, for 15 and 30 min, and 1, 2, 6, 24, 48 h. Larval mortality and survival, Probyt analysis, developmental dynamics, longevity analysis, progeny production and the effect on sunflower seed vitality (germination energy and germination) were assessed. Larval mortality of 75.9% was achieved after 30 min of exposure at 44 °C, 77.0% at 45 °C after 15 min, and 100% after 45 min. At 60 and 65 °C total mortality was achieved already after 15 min of exposure. Lethal exposure time (LT50) needed to kill 50% of larval population was 15 min at 44.2 °C, 30 min at 43.3 °C, 45 min at 42.1 °C or 41.8 °C at 60 min, respectively. LT90 can be achieved after 15 min of exposure at 45.2 °C, 30 min at 44.3 °C, 45 min at 43.3 °C, or 60 min at 42.1 °C. Pupal LT50 was 15 min at 56.7 °C, 30 min at 53.1 °C, 45 min at 52.4 °C or 60 min at 52.2 °C, while LT90 was 15 min at 59.7 °C, 30 min at 56.3 °C, 45 min at 56.1 °C or 60 min at 55.6 °C. The fastest development, and the highest progeny production was in treatments when the parenteral population was exposed to 40 °C for 1, 2 and 6 h. The developmental duration was significantly shortened when parenteral population was exposed to 40 °C for 48 h. The temperature and exposure did affect the duration of the adult life stage only when exposed for 2, 3, 6, 24 and 48 h to 40 °C. The germination of sunflower seed (86.7%) was inhibited by heat at 45 °C when exposed for 24 h.",
publisher = "Elsevier",
journal = "Journal of Stored Products Research",
title = "Thermal treatments in controlling Plodia interpunctella (Lepidoptera: Pyralidae) on sunflower seeds and their effect on seed vitality",
pages = "102384",
volume = "108",
doi = "10.1016/j.jspr.2024.102384"
}
Gvozdenac, S., Prvulović, D., Lozanov-Crvenković, Z., Štajner-Papuga, I., Ovuka, J., Krstić, M., Tanasković, S.,& Vukajlović, F.. (2024). Thermal treatments in controlling Plodia interpunctella (Lepidoptera: Pyralidae) on sunflower seeds and their effect on seed vitality. in Journal of Stored Products Research
Elsevier., 108, 102384.
https://doi.org/10.1016/j.jspr.2024.102384
Gvozdenac S, Prvulović D, Lozanov-Crvenković Z, Štajner-Papuga I, Ovuka J, Krstić M, Tanasković S, Vukajlović F. Thermal treatments in controlling Plodia interpunctella (Lepidoptera: Pyralidae) on sunflower seeds and their effect on seed vitality. in Journal of Stored Products Research. 2024;108:102384.
doi:10.1016/j.jspr.2024.102384 .
Gvozdenac, Sonja, Prvulović, Dejan, Lozanov-Crvenković, Zagorka, Štajner-Papuga, Ivana, Ovuka, Jelena, Krstić, Miloš, Tanasković, Snežana, Vukajlović, Filip, "Thermal treatments in controlling Plodia interpunctella (Lepidoptera: Pyralidae) on sunflower seeds and their effect on seed vitality" in Journal of Stored Products Research, 108 (2024):102384,
https://doi.org/10.1016/j.jspr.2024.102384 . .

Thermal treatments in controlling Plodia interpunctella (Lepidoptera: Pyralidae) on sunflower seeds and their effect on seed vitality

Gvozdenac, Sonja; Prvulović, Dejan; Lozanov-Crvenković, Zagorka; Štajner-Papuga, Ivana; Ovuka, Jelena; Krstić, Miloš; Tanasković, Snežana; Vukajlović, Filip

(Elsevier, 2024)

TY  - JOUR
AU  - Gvozdenac, Sonja
AU  - Prvulović, Dejan
AU  - Lozanov-Crvenković, Zagorka
AU  - Štajner-Papuga, Ivana
AU  - Ovuka, Jelena
AU  - Krstić, Miloš
AU  - Tanasković, Snežana
AU  - Vukajlović, Filip
PY  - 2024
UR  - http://fiver.ifvcns.rs/handle/123456789/4789
AB  - This work aimed to assess the potential of thermal treatments for controlling P. interpunctella on sunflower seeds, based on its tolerance to high/elevated temperatures and effect on seed vitality. The tests involved mature larvae (L5) and pupae, exposed to 35, 40, 42, 44, 45, 50, 55 and 60 °C, for 15 and 30 min, and 1, 2, 6, 24, 48 h. Larval mortality and survival, Probyt analysis, developmental dynamics, longevity analysis, progeny production and the effect on sunflower seed vitality (germination energy and germination) were assessed. Larval mortality of 75.9% was achieved after 30 min of exposure at 44 °C, 77.0% at 45 °C after 15 min, and 100% after 45 min. At 60 and 65 °C total mortality was achieved already after 15 min of exposure. Lethal exposure time (LT50) needed to kill 50% of larval population was 15 min at 44.2 °C, 30 min at 43.3 °C, 45 min at 42.1 °C or 41.8 °C at 60 min, respectively. LT90 can be achieved after 15 min of exposure at 45.2 °C, 30 min at 44.3 °C, 45 min at 43.3 °C, or 60 min at 42.1 °C. Pupal LT50 was 15 min at 56.7 °C, 30 min at 53.1 °C, 45 min at 52.4 °C or 60 min at 52.2 °C, while LT90 was 15 min at 59.7 °C, 30 min at 56.3 °C, 45 min at 56.1 °C or 60 min at 55.6 °C. The fastest development, and the highest progeny production was in treatments when the parenteral population was exposed to 40 °C for 1, 2 and 6 h. The developmental duration was significantly shortened when parenteral population was exposed to 40 °C for 48 h. The temperature and exposure did affect the duration of the adult life stage only when exposed for 2, 3, 6, 24 and 48 h to 40 °C. The germination of sunflower seed (86.7%) was inhibited by heat at 45 °C when exposed for 24 h.
PB  - Elsevier
T2  - Journal of Stored Products Research
T1  - Thermal treatments in controlling Plodia interpunctella (Lepidoptera: Pyralidae) on sunflower seeds and their effect on seed vitality
SP  - 102384
VL  - 108
DO  - 10.1016/j.jspr.2024.102384
ER  - 
@article{
author = "Gvozdenac, Sonja and Prvulović, Dejan and Lozanov-Crvenković, Zagorka and Štajner-Papuga, Ivana and Ovuka, Jelena and Krstić, Miloš and Tanasković, Snežana and Vukajlović, Filip",
year = "2024",
abstract = "This work aimed to assess the potential of thermal treatments for controlling P. interpunctella on sunflower seeds, based on its tolerance to high/elevated temperatures and effect on seed vitality. The tests involved mature larvae (L5) and pupae, exposed to 35, 40, 42, 44, 45, 50, 55 and 60 °C, for 15 and 30 min, and 1, 2, 6, 24, 48 h. Larval mortality and survival, Probyt analysis, developmental dynamics, longevity analysis, progeny production and the effect on sunflower seed vitality (germination energy and germination) were assessed. Larval mortality of 75.9% was achieved after 30 min of exposure at 44 °C, 77.0% at 45 °C after 15 min, and 100% after 45 min. At 60 and 65 °C total mortality was achieved already after 15 min of exposure. Lethal exposure time (LT50) needed to kill 50% of larval population was 15 min at 44.2 °C, 30 min at 43.3 °C, 45 min at 42.1 °C or 41.8 °C at 60 min, respectively. LT90 can be achieved after 15 min of exposure at 45.2 °C, 30 min at 44.3 °C, 45 min at 43.3 °C, or 60 min at 42.1 °C. Pupal LT50 was 15 min at 56.7 °C, 30 min at 53.1 °C, 45 min at 52.4 °C or 60 min at 52.2 °C, while LT90 was 15 min at 59.7 °C, 30 min at 56.3 °C, 45 min at 56.1 °C or 60 min at 55.6 °C. The fastest development, and the highest progeny production was in treatments when the parenteral population was exposed to 40 °C for 1, 2 and 6 h. The developmental duration was significantly shortened when parenteral population was exposed to 40 °C for 48 h. The temperature and exposure did affect the duration of the adult life stage only when exposed for 2, 3, 6, 24 and 48 h to 40 °C. The germination of sunflower seed (86.7%) was inhibited by heat at 45 °C when exposed for 24 h.",
publisher = "Elsevier",
journal = "Journal of Stored Products Research",
title = "Thermal treatments in controlling Plodia interpunctella (Lepidoptera: Pyralidae) on sunflower seeds and their effect on seed vitality",
pages = "102384",
volume = "108",
doi = "10.1016/j.jspr.2024.102384"
}
Gvozdenac, S., Prvulović, D., Lozanov-Crvenković, Z., Štajner-Papuga, I., Ovuka, J., Krstić, M., Tanasković, S.,& Vukajlović, F.. (2024). Thermal treatments in controlling Plodia interpunctella (Lepidoptera: Pyralidae) on sunflower seeds and their effect on seed vitality. in Journal of Stored Products Research
Elsevier., 108, 102384.
https://doi.org/10.1016/j.jspr.2024.102384
Gvozdenac S, Prvulović D, Lozanov-Crvenković Z, Štajner-Papuga I, Ovuka J, Krstić M, Tanasković S, Vukajlović F. Thermal treatments in controlling Plodia interpunctella (Lepidoptera: Pyralidae) on sunflower seeds and their effect on seed vitality. in Journal of Stored Products Research. 2024;108:102384.
doi:10.1016/j.jspr.2024.102384 .
Gvozdenac, Sonja, Prvulović, Dejan, Lozanov-Crvenković, Zagorka, Štajner-Papuga, Ivana, Ovuka, Jelena, Krstić, Miloš, Tanasković, Snežana, Vukajlović, Filip, "Thermal treatments in controlling Plodia interpunctella (Lepidoptera: Pyralidae) on sunflower seeds and their effect on seed vitality" in Journal of Stored Products Research, 108 (2024):102384,
https://doi.org/10.1016/j.jspr.2024.102384 . .

Hektolitarska masa i sprega sa pokazateljima kvaliteta uljane repice

Rajković, Dragana; Marjanović-Jeromela, Ana; Šarac, Vladimir; Grbić, Nada; Stojanović, Zorica

(Novi Sad : Univerzitet u Novom Sadu, Tehnološki fakultet, 2024)

TY  - CONF
AU  - Rajković, Dragana
AU  - Marjanović-Jeromela, Ana
AU  - Šarac, Vladimir
AU  - Grbić, Nada
AU  - Stojanović, Zorica
PY  - 2024
UR  - http://fiver.ifvcns.rs/handle/123456789/4704
AB  - Kvalitet uljarica je važan element celokupnog lanca vrednosti kako bi se proizveo proizvod visokog kvaliteta, uskladištio, obradio i na kraju isporučio potrošaču. Hektolitarska masa je jedan od parametara kvaliteta koji određuje fizičke osobine semena i predstavlja masu jednog hektolitra izraženu u kilogramima. U radu su istaknuti značaj određivanja hektolitarske mase i faktori koji utiču na nju. Istražena je hektolitarska masa uljane repice tokom tri proizvodne godine i analizirana je njena veza sa drugim parametrima kvaliteta. Vrednosti hektolitarske mase su varirale tokom ispitivanih godina i između sorti i hibrida.
AB  - The quality of oilseeds is an important element of the value chain in order to produce a high-quality product, encompass storage, processing, and consumer delivery. Test weight (hectolitre mass) represents the mass of one hectolitre of seeds expressed in kilograms. This paper highlights the importance of determining the test weight and the factors that influence it. The study investigates test weight of rapeseed over three production years, analysing its correlation with other quality parameters. Results reveal varying test weight values across the examined years and among different cultivars and hybrids.
PB  - Novi Sad : Univerzitet u Novom Sadu, Tehnološki fakultet
PB  - Novi Sad : Institut za ratarstvo i povrtarstvo
PB  - Novi Sad : Industrijsko bilje
C3  - Zbornik radova, 65. Savetovanje industrije ulja Proizvodnja i prerada uljarica, Herceg Novi, 23-28. jun 2024.
T1  - Hektolitarska masa i sprega sa pokazateljima kvaliteta uljane repice
T1  - Canola test weight and relationship with quality traits
EP  - 124
SP  - 117
UR  - https://hdl.handle.net/21.15107/rcub_fiver_4704
ER  - 
@conference{
author = "Rajković, Dragana and Marjanović-Jeromela, Ana and Šarac, Vladimir and Grbić, Nada and Stojanović, Zorica",
year = "2024",
abstract = "Kvalitet uljarica je važan element celokupnog lanca vrednosti kako bi se proizveo proizvod visokog kvaliteta, uskladištio, obradio i na kraju isporučio potrošaču. Hektolitarska masa je jedan od parametara kvaliteta koji određuje fizičke osobine semena i predstavlja masu jednog hektolitra izraženu u kilogramima. U radu su istaknuti značaj određivanja hektolitarske mase i faktori koji utiču na nju. Istražena je hektolitarska masa uljane repice tokom tri proizvodne godine i analizirana je njena veza sa drugim parametrima kvaliteta. Vrednosti hektolitarske mase su varirale tokom ispitivanih godina i između sorti i hibrida., The quality of oilseeds is an important element of the value chain in order to produce a high-quality product, encompass storage, processing, and consumer delivery. Test weight (hectolitre mass) represents the mass of one hectolitre of seeds expressed in kilograms. This paper highlights the importance of determining the test weight and the factors that influence it. The study investigates test weight of rapeseed over three production years, analysing its correlation with other quality parameters. Results reveal varying test weight values across the examined years and among different cultivars and hybrids.",
publisher = "Novi Sad : Univerzitet u Novom Sadu, Tehnološki fakultet, Novi Sad : Institut za ratarstvo i povrtarstvo, Novi Sad : Industrijsko bilje",
journal = "Zbornik radova, 65. Savetovanje industrije ulja Proizvodnja i prerada uljarica, Herceg Novi, 23-28. jun 2024.",
title = "Hektolitarska masa i sprega sa pokazateljima kvaliteta uljane repice, Canola test weight and relationship with quality traits",
pages = "124-117",
url = "https://hdl.handle.net/21.15107/rcub_fiver_4704"
}
Rajković, D., Marjanović-Jeromela, A., Šarac, V., Grbić, N.,& Stojanović, Z.. (2024). Hektolitarska masa i sprega sa pokazateljima kvaliteta uljane repice. in Zbornik radova, 65. Savetovanje industrije ulja Proizvodnja i prerada uljarica, Herceg Novi, 23-28. jun 2024.
Novi Sad : Univerzitet u Novom Sadu, Tehnološki fakultet., 117-124.
https://hdl.handle.net/21.15107/rcub_fiver_4704
Rajković D, Marjanović-Jeromela A, Šarac V, Grbić N, Stojanović Z. Hektolitarska masa i sprega sa pokazateljima kvaliteta uljane repice. in Zbornik radova, 65. Savetovanje industrije ulja Proizvodnja i prerada uljarica, Herceg Novi, 23-28. jun 2024.. 2024;:117-124.
https://hdl.handle.net/21.15107/rcub_fiver_4704 .
Rajković, Dragana, Marjanović-Jeromela, Ana, Šarac, Vladimir, Grbić, Nada, Stojanović, Zorica, "Hektolitarska masa i sprega sa pokazateljima kvaliteta uljane repice" in Zbornik radova, 65. Savetovanje industrije ulja Proizvodnja i prerada uljarica, Herceg Novi, 23-28. jun 2024. (2024):117-124,
https://hdl.handle.net/21.15107/rcub_fiver_4704 .

Determination of the optimal doses of gamma irradiation for induced mutation in wheat and barley

Glogovac, Svetlana; Trkulja, Dragana; Kondić-Špika, Ankica; Mirosavljević, Milan; Jocković, Bojan; Brbaklić, Ljiljana; Miladinović, Dragana

(Novi Sad : Institute of Field and Vegetable Crops, 2024)

TY  - JOUR
AU  - Glogovac, Svetlana
AU  - Trkulja, Dragana
AU  - Kondić-Špika, Ankica
AU  - Mirosavljević, Milan
AU  - Jocković, Bojan
AU  - Brbaklić, Ljiljana
AU  - Miladinović, Dragana
PY  - 2024
UR  - http://fiver.ifvcns.rs/handle/123456789/4496
AB  - One of the major challenges that plant breeders face in the 21st century is food safety for growing human population coupled with extreme climate changes. Accordingly, the most important breeders’ goal is to find appropriate methods in response to these challenges in order to create high-yielding varieties resilient to abiotic and biotic stressors. The aim of this study was to determine optimal doses of gamma irradiation in two wheat and one barley varieties and to apply the identified doses for development of mutant populations. Wheat and barley varieties showed different reactions to applied doses of gamma irradiation. Wheat varieties had germination rate over 90% at all applied doses while barley seeds showed to be more susceptible to gamma irradiation. Gamma irradiation had greater influence on seedling height which was clearly 
demonstrated by growth reduction with increasing radiation doses. ANOVA showed a significant 
difference between genotypes, applied doses of gamma radiation as well as genotype by doses 
interaction for seedling height. At highest dose of 600 Gy, the reduction of seedling height was 
94.6%, 96.5% and 96.8% in Simonida, Rudnik and NS 40S, respectively. The irradiation doses that 
resulted in seedling growth reduction by 50% (GR50) were 210 Gy for barley Rudnik and wheat 
NS 40S, and 310 Gy for wheat variety Simonida. Identified doses were used for the irradiation of 
2000 seeds of each variety in order to produce mutant populations that will be further used in a breeding program for development of varieties with increased resilience to climate change.
AB  - Jedan od najvećih izazova za oplemenjivače u 21. veku je da se osigura dovoljna količina hrane za rastuću ljudsku populaciju u ekstremnim vremenskim uslovima izazvanim klimatskim promenama. Shodno tome, najvažniji cilj za proces oplemenjivanja je pronalaženje odgovarajućih metoda za stvaranje visokoprinosnih sorti tolerantnih na abiotičke i biotičke faktore stresa. Cilj ovog istraživanja bio je da se utvrde optimalne doze gama zračenja za dve sorte pšenice i jednu sortu ječma i da se identifikovane doze primene za razvoj mutantnih populacija. Sorte pšenice i ječma su ispoljile različite reakcije na primenjene doze gama zračenja. Sorte pšenice su imale klijavost preko 90% pri svim primenjenim dozama, dok je za ječam utvrđena veća osetljivost na gama zračenje. Gama zračenje je imalo veći uticaj na visinu klijanaca, pri čemu je redukcija rasta bila izraženija sa povećanjem doze zračenja. Analiza varijanse (ANOVA) je pokazala značajnu razliku u visini klijanaca između genotipova, primenjenih doza gama zračenja kao i interakcije genotip × doza. Pri najvećoj dozi od 600 Gy smanjenje visine klijanaca iznosilo je 94,6%, 96,5% i 96,8% kod Simonide, Rudnika i NS 40S, redom. Doze zračenja pri kojima je redukcija rasta klijanaca bila 50% (GR50) iznosile su 210 Gy za sorte Rudnik i NS 40S dok je za sortu pšenice Simonida bila 310 Gy. Identifikovanim dozama je zračeno 2000 semena svake sorte za proizvodnju mutantnih populacija koje bi se u budućim programima oplemenjivanja mogle koristiti za stvaranje sorti tolerantnih na izmenjene klimatske uslove.
PB  - Novi Sad : Institute of Field and Vegetable Crops
T2  - Ratarstvo i povrtarstvo
T1  - Determination of the optimal doses of gamma irradiation for induced mutation  in wheat and barley
T1  - Određivanje optimalnih doza gama zračenja kod indukovanih mutacija pšenice i ječma
EP  - 8
IS  - 1
SP  - 1
VL  - 61
DO  - 10.5937/ratpov61-48887
ER  - 
@article{
author = "Glogovac, Svetlana and Trkulja, Dragana and Kondić-Špika, Ankica and Mirosavljević, Milan and Jocković, Bojan and Brbaklić, Ljiljana and Miladinović, Dragana",
year = "2024",
abstract = "One of the major challenges that plant breeders face in the 21st century is food safety for growing human population coupled with extreme climate changes. Accordingly, the most important breeders’ goal is to find appropriate methods in response to these challenges in order to create high-yielding varieties resilient to abiotic and biotic stressors. The aim of this study was to determine optimal doses of gamma irradiation in two wheat and one barley varieties and to apply the identified doses for development of mutant populations. Wheat and barley varieties showed different reactions to applied doses of gamma irradiation. Wheat varieties had germination rate over 90% at all applied doses while barley seeds showed to be more susceptible to gamma irradiation. Gamma irradiation had greater influence on seedling height which was clearly 
demonstrated by growth reduction with increasing radiation doses. ANOVA showed a significant 
difference between genotypes, applied doses of gamma radiation as well as genotype by doses 
interaction for seedling height. At highest dose of 600 Gy, the reduction of seedling height was 
94.6%, 96.5% and 96.8% in Simonida, Rudnik and NS 40S, respectively. The irradiation doses that 
resulted in seedling growth reduction by 50% (GR50) were 210 Gy for barley Rudnik and wheat 
NS 40S, and 310 Gy for wheat variety Simonida. Identified doses were used for the irradiation of 
2000 seeds of each variety in order to produce mutant populations that will be further used in a breeding program for development of varieties with increased resilience to climate change., Jedan od najvećih izazova za oplemenjivače u 21. veku je da se osigura dovoljna količina hrane za rastuću ljudsku populaciju u ekstremnim vremenskim uslovima izazvanim klimatskim promenama. Shodno tome, najvažniji cilj za proces oplemenjivanja je pronalaženje odgovarajućih metoda za stvaranje visokoprinosnih sorti tolerantnih na abiotičke i biotičke faktore stresa. Cilj ovog istraživanja bio je da se utvrde optimalne doze gama zračenja za dve sorte pšenice i jednu sortu ječma i da se identifikovane doze primene za razvoj mutantnih populacija. Sorte pšenice i ječma su ispoljile različite reakcije na primenjene doze gama zračenja. Sorte pšenice su imale klijavost preko 90% pri svim primenjenim dozama, dok je za ječam utvrđena veća osetljivost na gama zračenje. Gama zračenje je imalo veći uticaj na visinu klijanaca, pri čemu je redukcija rasta bila izraženija sa povećanjem doze zračenja. Analiza varijanse (ANOVA) je pokazala značajnu razliku u visini klijanaca između genotipova, primenjenih doza gama zračenja kao i interakcije genotip × doza. Pri najvećoj dozi od 600 Gy smanjenje visine klijanaca iznosilo je 94,6%, 96,5% i 96,8% kod Simonide, Rudnika i NS 40S, redom. Doze zračenja pri kojima je redukcija rasta klijanaca bila 50% (GR50) iznosile su 210 Gy za sorte Rudnik i NS 40S dok je za sortu pšenice Simonida bila 310 Gy. Identifikovanim dozama je zračeno 2000 semena svake sorte za proizvodnju mutantnih populacija koje bi se u budućim programima oplemenjivanja mogle koristiti za stvaranje sorti tolerantnih na izmenjene klimatske uslove.",
publisher = "Novi Sad : Institute of Field and Vegetable Crops",
journal = "Ratarstvo i povrtarstvo",
title = "Determination of the optimal doses of gamma irradiation for induced mutation  in wheat and barley, Određivanje optimalnih doza gama zračenja kod indukovanih mutacija pšenice i ječma",
pages = "8-1",
number = "1",
volume = "61",
doi = "10.5937/ratpov61-48887"
}
Glogovac, S., Trkulja, D., Kondić-Špika, A., Mirosavljević, M., Jocković, B., Brbaklić, L.,& Miladinović, D.. (2024). Determination of the optimal doses of gamma irradiation for induced mutation  in wheat and barley. in Ratarstvo i povrtarstvo
Novi Sad : Institute of Field and Vegetable Crops., 61(1), 1-8.
https://doi.org/10.5937/ratpov61-48887
Glogovac S, Trkulja D, Kondić-Špika A, Mirosavljević M, Jocković B, Brbaklić L, Miladinović D. Determination of the optimal doses of gamma irradiation for induced mutation  in wheat and barley. in Ratarstvo i povrtarstvo. 2024;61(1):1-8.
doi:10.5937/ratpov61-48887 .
Glogovac, Svetlana, Trkulja, Dragana, Kondić-Špika, Ankica, Mirosavljević, Milan, Jocković, Bojan, Brbaklić, Ljiljana, Miladinović, Dragana, "Determination of the optimal doses of gamma irradiation for induced mutation  in wheat and barley" in Ratarstvo i povrtarstvo, 61, no. 1 (2024):1-8,
https://doi.org/10.5937/ratpov61-48887 . .

Centar izuzetnih vrednosti za inovacije u oplemenjivanju biljaka tolerantnih na promene klime

Miladinović, Dragana; Kondić-Špika, Ankica; Marjanović-Jeromela, Ana; Bekavac, Goran; Tančić-Živanov, Sonja; Cvejić, Sandra; Mikić, Sanja; Radanović, Aleksandra; Dedić, Boško; Gvozdenac, Sonja; Mirosavljević, Milan; Kiprovski, Biljana; Trkulja, Dragana; Ovuka, Jelena; Jocković, Milan; Glogovac, Svetlana; Rajković, Dragana; Takač, Verica; Ćuk, Nemanja; Krstić, Miloš; Jocković, Jelena; Hladni, Nada; Miklič, Vladimir; Jocić, Siniša; Miladinović, Jegor

(Beograd : Društvo genetičara Srbije, 2023)

TY  - CONF
AU  - Miladinović, Dragana
AU  - Kondić-Špika, Ankica
AU  - Marjanović-Jeromela, Ana
AU  - Bekavac, Goran
AU  - Tančić-Živanov, Sonja
AU  - Cvejić, Sandra
AU  - Mikić, Sanja
AU  - Radanović, Aleksandra
AU  - Dedić, Boško
AU  - Gvozdenac, Sonja
AU  - Mirosavljević, Milan
AU  - Kiprovski, Biljana
AU  - Trkulja, Dragana
AU  - Ovuka, Jelena
AU  - Jocković, Milan
AU  - Glogovac, Svetlana
AU  - Rajković, Dragana
AU  - Takač, Verica
AU  - Ćuk, Nemanja
AU  - Krstić, Miloš
AU  - Jocković, Jelena
AU  - Hladni, Nada
AU  - Miklič, Vladimir
AU  - Jocić, Siniša
AU  - Miladinović, Jegor
PY  - 2023
UR  - http://fiver.ifvcns.rs/handle/123456789/4010
AB  - Oplemenjivanje gajenih biljaka je kontinuirani proces usmeren ka povećanju prinosa i poboljšanju njihove otpornosti na biotičke i abiotičke stresove. U novije vreme, česte i često nepredvidive varijacije u klimatskim i tržišnim uslovima su dovele do toga da klasične metode oplemenjivanja ne mogu uvek da obezbede rešenja i blagovremeni odgovor na nove izazove u poljoprivrednoj proizvodnji. Imajući sve ovo u vidu, Institut za ratarstvo i povrtarstvo (IFVCNS) je osnovao Centar izvrsnosti za inovacije u oplemenjivanju biljaka tolerantnih na promene klime – Climate Crops sa ciljem uvođenja i primene novih tehnika oplemenjivanja (NBT), kao i efikasnih platformi za fenotipizaciju u oplemenjivačke programe ratarskih biljaka u IFVCNS. Očekuje se da će aktivnocti u okviru Climate Crops pozitivno uticati na izvrsnost i inovativne kapacitete IFVCNS u oblasti oplemenjivanja biljaka tolerantnih na ekstremne vremenske uslove koji se javljaju kao posledica promene klime.
AB  - Crop breeding is a continuous process aimed at increasing yields and improving crop resistance to biotic and abiotic stresses. Recently, frequent and often unpredictable variations in climatic and market conditions have led to the fact that classical breeding methods cannot always provide solutions and a timely response to new challenges in agricultural production. With all this in mind, the Institute of Field and Vegetable Crops (IFVCNS) established the Centre of Excellence for Innovations in the Breeding of Climate-tolerant Plants - Climate Crops with the aim of introducing and applying new breeding techniques (NBT), along with efficient phenotyping platforms in crop breeding programs in IFVCNS. It is expected that the activities within Climate Crops will have a positive impact on the excellence and innovative capacities of IFVCNS in the field of breeding plants tolerant to the extreme weather conditions that occur as a result of climate change.
PB  - Beograd : Društvo genetičara Srbije
PB  - Beograd : Društvo selekcionera i semenara Republike Srbije
C3  - Zbornik apstrakata, 10. Simpozijum Društva selekcionera i semenara Republike Srbije i 7. Simpozijum sekcije za oplemenjivanje organizama Društva genetičara Srbije, Vrnjačka Banja, 16-18.10.2023.
T1  - Centar izuzetnih vrednosti za inovacije u oplemenjivanju biljaka tolerantnih na promene klime
T1  - Centre of excellence for innovations in breeding of climate-resilient crops
EP  - 164
SP  - 163
UR  - https://hdl.handle.net/21.15107/rcub_fiver_4010
ER  - 
@conference{
author = "Miladinović, Dragana and Kondić-Špika, Ankica and Marjanović-Jeromela, Ana and Bekavac, Goran and Tančić-Živanov, Sonja and Cvejić, Sandra and Mikić, Sanja and Radanović, Aleksandra and Dedić, Boško and Gvozdenac, Sonja and Mirosavljević, Milan and Kiprovski, Biljana and Trkulja, Dragana and Ovuka, Jelena and Jocković, Milan and Glogovac, Svetlana and Rajković, Dragana and Takač, Verica and Ćuk, Nemanja and Krstić, Miloš and Jocković, Jelena and Hladni, Nada and Miklič, Vladimir and Jocić, Siniša and Miladinović, Jegor",
year = "2023",
abstract = "Oplemenjivanje gajenih biljaka je kontinuirani proces usmeren ka povećanju prinosa i poboljšanju njihove otpornosti na biotičke i abiotičke stresove. U novije vreme, česte i često nepredvidive varijacije u klimatskim i tržišnim uslovima su dovele do toga da klasične metode oplemenjivanja ne mogu uvek da obezbede rešenja i blagovremeni odgovor na nove izazove u poljoprivrednoj proizvodnji. Imajući sve ovo u vidu, Institut za ratarstvo i povrtarstvo (IFVCNS) je osnovao Centar izvrsnosti za inovacije u oplemenjivanju biljaka tolerantnih na promene klime – Climate Crops sa ciljem uvođenja i primene novih tehnika oplemenjivanja (NBT), kao i efikasnih platformi za fenotipizaciju u oplemenjivačke programe ratarskih biljaka u IFVCNS. Očekuje se da će aktivnocti u okviru Climate Crops pozitivno uticati na izvrsnost i inovativne kapacitete IFVCNS u oblasti oplemenjivanja biljaka tolerantnih na ekstremne vremenske uslove koji se javljaju kao posledica promene klime., Crop breeding is a continuous process aimed at increasing yields and improving crop resistance to biotic and abiotic stresses. Recently, frequent and often unpredictable variations in climatic and market conditions have led to the fact that classical breeding methods cannot always provide solutions and a timely response to new challenges in agricultural production. With all this in mind, the Institute of Field and Vegetable Crops (IFVCNS) established the Centre of Excellence for Innovations in the Breeding of Climate-tolerant Plants - Climate Crops with the aim of introducing and applying new breeding techniques (NBT), along with efficient phenotyping platforms in crop breeding programs in IFVCNS. It is expected that the activities within Climate Crops will have a positive impact on the excellence and innovative capacities of IFVCNS in the field of breeding plants tolerant to the extreme weather conditions that occur as a result of climate change.",
publisher = "Beograd : Društvo genetičara Srbije, Beograd : Društvo selekcionera i semenara Republike Srbije",
journal = "Zbornik apstrakata, 10. Simpozijum Društva selekcionera i semenara Republike Srbije i 7. Simpozijum sekcije za oplemenjivanje organizama Društva genetičara Srbije, Vrnjačka Banja, 16-18.10.2023.",
title = "Centar izuzetnih vrednosti za inovacije u oplemenjivanju biljaka tolerantnih na promene klime, Centre of excellence for innovations in breeding of climate-resilient crops",
pages = "164-163",
url = "https://hdl.handle.net/21.15107/rcub_fiver_4010"
}
Miladinović, D., Kondić-Špika, A., Marjanović-Jeromela, A., Bekavac, G., Tančić-Živanov, S., Cvejić, S., Mikić, S., Radanović, A., Dedić, B., Gvozdenac, S., Mirosavljević, M., Kiprovski, B., Trkulja, D., Ovuka, J., Jocković, M., Glogovac, S., Rajković, D., Takač, V., Ćuk, N., Krstić, M., Jocković, J., Hladni, N., Miklič, V., Jocić, S.,& Miladinović, J.. (2023). Centar izuzetnih vrednosti za inovacije u oplemenjivanju biljaka tolerantnih na promene klime. in Zbornik apstrakata, 10. Simpozijum Društva selekcionera i semenara Republike Srbije i 7. Simpozijum sekcije za oplemenjivanje organizama Društva genetičara Srbije, Vrnjačka Banja, 16-18.10.2023.
Beograd : Društvo genetičara Srbije., 163-164.
https://hdl.handle.net/21.15107/rcub_fiver_4010
Miladinović D, Kondić-Špika A, Marjanović-Jeromela A, Bekavac G, Tančić-Živanov S, Cvejić S, Mikić S, Radanović A, Dedić B, Gvozdenac S, Mirosavljević M, Kiprovski B, Trkulja D, Ovuka J, Jocković M, Glogovac S, Rajković D, Takač V, Ćuk N, Krstić M, Jocković J, Hladni N, Miklič V, Jocić S, Miladinović J. Centar izuzetnih vrednosti za inovacije u oplemenjivanju biljaka tolerantnih na promene klime. in Zbornik apstrakata, 10. Simpozijum Društva selekcionera i semenara Republike Srbije i 7. Simpozijum sekcije za oplemenjivanje organizama Društva genetičara Srbije, Vrnjačka Banja, 16-18.10.2023.. 2023;:163-164.
https://hdl.handle.net/21.15107/rcub_fiver_4010 .
Miladinović, Dragana, Kondić-Špika, Ankica, Marjanović-Jeromela, Ana, Bekavac, Goran, Tančić-Živanov, Sonja, Cvejić, Sandra, Mikić, Sanja, Radanović, Aleksandra, Dedić, Boško, Gvozdenac, Sonja, Mirosavljević, Milan, Kiprovski, Biljana, Trkulja, Dragana, Ovuka, Jelena, Jocković, Milan, Glogovac, Svetlana, Rajković, Dragana, Takač, Verica, Ćuk, Nemanja, Krstić, Miloš, Jocković, Jelena, Hladni, Nada, Miklič, Vladimir, Jocić, Siniša, Miladinović, Jegor, "Centar izuzetnih vrednosti za inovacije u oplemenjivanju biljaka tolerantnih na promene klime" in Zbornik apstrakata, 10. Simpozijum Društva selekcionera i semenara Republike Srbije i 7. Simpozijum sekcije za oplemenjivanje organizama Društva genetičara Srbije, Vrnjačka Banja, 16-18.10.2023. (2023):163-164,
https://hdl.handle.net/21.15107/rcub_fiver_4010 .