Dimić, Dušan

Link to this page

Authority KeyName Variants
77cd47a1-e3e4-42e3-b638-805f8d18e86a
  • Dimić, Dušan (1)

Author's Bibliography

Chemical Composition, Antioxidant Potential, and Nutritional Evaluation of Cultivated Sorghum Grains: A Combined Experimental, Theoretical, and Multivariate Analysis

Jaćimović, Simona; Kiprovski, Biljana; Ristivojević, Petar; Dimić, Dušan; Nakarada, Đura; Dojčinović, Biljana; Sikora, Vladimir; Teslić, Nemanja; Pantelić, Nebojša

(Basel : MDPI, 2023)

TY  - JOUR
AU  - Jaćimović, Simona
AU  - Kiprovski, Biljana
AU  - Ristivojević, Petar
AU  - Dimić, Dušan
AU  - Nakarada, Đura
AU  - Dojčinović, Biljana
AU  - Sikora, Vladimir
AU  - Teslić, Nemanja
AU  - Pantelić, Nebojša
PY  - 2023
UR  - http://fiver.ifvcns.rs/handle/123456789/3647
AB  - Sorghum grain (Sorghum bicolor L. Moench) is a gluten-free cereal with excellent nutritional value and is a good source of antioxidants, including polyphenols, as well as minerals with proven health benefits. Herein, the phenolic composition, elemental profile, and antioxidant activity of sixteen food-grade sorghum grains (S1–S16) grown under agroecological conditions in Serbia were determined. Nine phenolic compounds characteristic of sorghum grains, such as luteolinidin, 5-methoxyluteolinidin, luteolidin derivative, luteolidin glucoside, apigeninidin, 7-methoxyapigeninidin, apigeninidin glucoside, and cyanidin derivative, were quantified. The antioxidant potential of the analyzed sorghum grains was evaluated by UV/Vis (DPPH, ABTS, and FRAP) and Electron Paramagnetic Resonance spectroscopy (hydroxyl and ascorbyl radical scavenging assays). The content of macro- and microelements was determined by Inductively Coupled Plasma Optical Emission spectroscopy. Theoretical daily intakes of selected major and trace elements were assessed and compared with the Recommended Daily Allowance or Adequate Intake. Sample S8 had the highest amount of phenolic compounds, while S4, S6, and S8 exhibited the strongest antioxidative potential. The sorghum studied could completely satisfy the daily needs of macro- (K, Mg, and P) and microelements (Se, Zn, Fe). Pattern recognition techniques confirmed the discrimination of samples based on phenolic profile and elemental analysis and recognized the main markers responsible for differences between the investigated samples. The reaction between hydroxyl radicals and luteolinidin/apigeninidin was investigated by Density Functional Theory and thermodynamically preferred mechanism was determined.
PB  - Basel : MDPI
T2  - Antioxidants (Basel)
T1  - Chemical Composition, Antioxidant Potential, and Nutritional Evaluation of Cultivated Sorghum Grains: A Combined Experimental, Theoretical, and Multivariate Analysis
IS  - 8
SP  - 1485
VL  - 12
DO  - 10.3390/antiox12081485
ER  - 
@article{
author = "Jaćimović, Simona and Kiprovski, Biljana and Ristivojević, Petar and Dimić, Dušan and Nakarada, Đura and Dojčinović, Biljana and Sikora, Vladimir and Teslić, Nemanja and Pantelić, Nebojša",
year = "2023",
abstract = "Sorghum grain (Sorghum bicolor L. Moench) is a gluten-free cereal with excellent nutritional value and is a good source of antioxidants, including polyphenols, as well as minerals with proven health benefits. Herein, the phenolic composition, elemental profile, and antioxidant activity of sixteen food-grade sorghum grains (S1–S16) grown under agroecological conditions in Serbia were determined. Nine phenolic compounds characteristic of sorghum grains, such as luteolinidin, 5-methoxyluteolinidin, luteolidin derivative, luteolidin glucoside, apigeninidin, 7-methoxyapigeninidin, apigeninidin glucoside, and cyanidin derivative, were quantified. The antioxidant potential of the analyzed sorghum grains was evaluated by UV/Vis (DPPH, ABTS, and FRAP) and Electron Paramagnetic Resonance spectroscopy (hydroxyl and ascorbyl radical scavenging assays). The content of macro- and microelements was determined by Inductively Coupled Plasma Optical Emission spectroscopy. Theoretical daily intakes of selected major and trace elements were assessed and compared with the Recommended Daily Allowance or Adequate Intake. Sample S8 had the highest amount of phenolic compounds, while S4, S6, and S8 exhibited the strongest antioxidative potential. The sorghum studied could completely satisfy the daily needs of macro- (K, Mg, and P) and microelements (Se, Zn, Fe). Pattern recognition techniques confirmed the discrimination of samples based on phenolic profile and elemental analysis and recognized the main markers responsible for differences between the investigated samples. The reaction between hydroxyl radicals and luteolinidin/apigeninidin was investigated by Density Functional Theory and thermodynamically preferred mechanism was determined.",
publisher = "Basel : MDPI",
journal = "Antioxidants (Basel)",
title = "Chemical Composition, Antioxidant Potential, and Nutritional Evaluation of Cultivated Sorghum Grains: A Combined Experimental, Theoretical, and Multivariate Analysis",
number = "8",
pages = "1485",
volume = "12",
doi = "10.3390/antiox12081485"
}
Jaćimović, S., Kiprovski, B., Ristivojević, P., Dimić, D., Nakarada, Đ., Dojčinović, B., Sikora, V., Teslić, N.,& Pantelić, N.. (2023). Chemical Composition, Antioxidant Potential, and Nutritional Evaluation of Cultivated Sorghum Grains: A Combined Experimental, Theoretical, and Multivariate Analysis. in Antioxidants (Basel)
Basel : MDPI., 12(8), 1485.
https://doi.org/10.3390/antiox12081485
Jaćimović S, Kiprovski B, Ristivojević P, Dimić D, Nakarada Đ, Dojčinović B, Sikora V, Teslić N, Pantelić N. Chemical Composition, Antioxidant Potential, and Nutritional Evaluation of Cultivated Sorghum Grains: A Combined Experimental, Theoretical, and Multivariate Analysis. in Antioxidants (Basel). 2023;12(8):1485.
doi:10.3390/antiox12081485 .
Jaćimović, Simona, Kiprovski, Biljana, Ristivojević, Petar, Dimić, Dušan, Nakarada, Đura, Dojčinović, Biljana, Sikora, Vladimir, Teslić, Nemanja, Pantelić, Nebojša, "Chemical Composition, Antioxidant Potential, and Nutritional Evaluation of Cultivated Sorghum Grains: A Combined Experimental, Theoretical, and Multivariate Analysis" in Antioxidants (Basel), 12, no. 8 (2023):1485,
https://doi.org/10.3390/antiox12081485 . .
3
2