Jeliazkov, Valtcho

Link to this page

Authority KeyName Variants
f9152ea8-036a-4feb-9664-ddd392374d53
  • Jeliazkov, Valtcho (2)
Projects

Author's Bibliography

Comparison of volatile compounds from clary sage (Salvia sclarea L.) verticillasters essential oil and hydrolate

Aćimović, Milica; Lončar, Biljana; Jeliazkov, Valtcho; Pezo, Lato; Ljujić, Jovana; Miljković, Ana; Vujisić, Ljubodrag

(Taylor & Francis, 2022)

TY  - JOUR
AU  - Aćimović, Milica
AU  - Lončar, Biljana
AU  - Jeliazkov, Valtcho
AU  - Pezo, Lato
AU  - Ljujić, Jovana
AU  - Miljković, Ana
AU  - Vujisić, Ljubodrag
PY  - 2022
UR  - http://fiver.ifvcns.rs/handle/123456789/3019
AB  - The volatile compounds of essential oil (EO) and corresponding hydrolate (HY) extracted by steam distillation from clary sage (Salvia sclarea L.) cv “Domaća mirisna” grown in Serbia were identified using gas hromatography/mass spectrometry (GC/MS). The most abundant compounds of EO were linalyl acetate (43.5%) and linalool (25.9%), followed by α-terpineol, germacrene D, and geranyl acetate. In the corresponding HY (recovered water-soluble fraction of EO) the dominant were linalool (63.3%) and α-terpineol (26.8%), followed by geraniol. These differences in composition between clary sage EO and HY could be explained by linalyl acetate's low water solubility. Clustering of 55 clary sage EO accessions (from literature) shows the presence of several chemotypes: linalyl acetate+linalool, linalyl acetate+sclareol, linalool+geranyl acetate, germacrene D+β-caryophyllene, caryophyllene oxide, and three unspecified chemotypes (geranyl acetate, methyl chavicol, and α-terpineol). According to this classification, clary sage cv “Domaća mirisna” belongs to a moderate linalyl acetate chemotype (between 19.8 and 45.7%). Further investigations need to focus on clary sage HY and their potential applications because HYs could increase economic gain as a by-product. However, their utilization for other purposes (cosmetic, postharvest fruit processing, organic agriculture, etc.) could be a safe solution for wastewater produced during EO distillation.
PB  - Taylor & Francis
T2  - Journal of Essential Oil Bearing Plants
T1  - Comparison of volatile compounds from clary sage (Salvia sclarea L.) verticillasters essential oil and hydrolate
EP  - 570
IS  - 3
SP  - 555
VL  - 25
DO  - 10.1080/0972060X.2022.2105662
ER  - 
@article{
author = "Aćimović, Milica and Lončar, Biljana and Jeliazkov, Valtcho and Pezo, Lato and Ljujić, Jovana and Miljković, Ana and Vujisić, Ljubodrag",
year = "2022",
abstract = "The volatile compounds of essential oil (EO) and corresponding hydrolate (HY) extracted by steam distillation from clary sage (Salvia sclarea L.) cv “Domaća mirisna” grown in Serbia were identified using gas hromatography/mass spectrometry (GC/MS). The most abundant compounds of EO were linalyl acetate (43.5%) and linalool (25.9%), followed by α-terpineol, germacrene D, and geranyl acetate. In the corresponding HY (recovered water-soluble fraction of EO) the dominant were linalool (63.3%) and α-terpineol (26.8%), followed by geraniol. These differences in composition between clary sage EO and HY could be explained by linalyl acetate's low water solubility. Clustering of 55 clary sage EO accessions (from literature) shows the presence of several chemotypes: linalyl acetate+linalool, linalyl acetate+sclareol, linalool+geranyl acetate, germacrene D+β-caryophyllene, caryophyllene oxide, and three unspecified chemotypes (geranyl acetate, methyl chavicol, and α-terpineol). According to this classification, clary sage cv “Domaća mirisna” belongs to a moderate linalyl acetate chemotype (between 19.8 and 45.7%). Further investigations need to focus on clary sage HY and their potential applications because HYs could increase economic gain as a by-product. However, their utilization for other purposes (cosmetic, postharvest fruit processing, organic agriculture, etc.) could be a safe solution for wastewater produced during EO distillation.",
publisher = "Taylor & Francis",
journal = "Journal of Essential Oil Bearing Plants",
title = "Comparison of volatile compounds from clary sage (Salvia sclarea L.) verticillasters essential oil and hydrolate",
pages = "570-555",
number = "3",
volume = "25",
doi = "10.1080/0972060X.2022.2105662"
}
Aćimović, M., Lončar, B., Jeliazkov, V., Pezo, L., Ljujić, J., Miljković, A.,& Vujisić, L.. (2022). Comparison of volatile compounds from clary sage (Salvia sclarea L.) verticillasters essential oil and hydrolate. in Journal of Essential Oil Bearing Plants
Taylor & Francis., 25(3), 555-570.
https://doi.org/10.1080/0972060X.2022.2105662
Aćimović M, Lončar B, Jeliazkov V, Pezo L, Ljujić J, Miljković A, Vujisić L. Comparison of volatile compounds from clary sage (Salvia sclarea L.) verticillasters essential oil and hydrolate. in Journal of Essential Oil Bearing Plants. 2022;25(3):555-570.
doi:10.1080/0972060X.2022.2105662 .
Aćimović, Milica, Lončar, Biljana, Jeliazkov, Valtcho, Pezo, Lato, Ljujić, Jovana, Miljković, Ana, Vujisić, Ljubodrag, "Comparison of volatile compounds from clary sage (Salvia sclarea L.) verticillasters essential oil and hydrolate" in Journal of Essential Oil Bearing Plants, 25, no. 3 (2022):555-570,
https://doi.org/10.1080/0972060X.2022.2105662 . .
7
6

Comparison of volatile compounds from clary sage (Salvia sclarea L.) verticillasters essential oil and hydrolate

Aćimović, Milica; Lončar, Biljana; Jeliazkov, Valtcho; Pezo, Lato; Ljujić, Jovana; Miljković, Ana; Vujisić, Ljubodrag

(Taylor & Francis, 2022)

TY  - JOUR
AU  - Aćimović, Milica
AU  - Lončar, Biljana
AU  - Jeliazkov, Valtcho
AU  - Pezo, Lato
AU  - Ljujić, Jovana
AU  - Miljković, Ana
AU  - Vujisić, Ljubodrag
PY  - 2022
UR  - http://fiver.ifvcns.rs/handle/123456789/3020
AB  - The volatile compounds of essential oil (EO) and corresponding hydrolate (HY) extracted by steam distillation from clary sage (Salvia sclarea L.) cv “Domaća mirisna” grown in Serbia were identified using gas hromatography/mass spectrometry (GC/MS). The most abundant compounds of EO were linalyl acetate (43.5%) and linalool (25.9%), followed by α-terpineol, germacrene D, and geranyl acetate. In the corresponding HY (recovered water-soluble fraction of EO) the dominant were linalool (63.3%) and α-terpineol (26.8%), followed by geraniol. These differences in composition between clary sage EO and HY could be explained by linalyl acetate's low water solubility. Clustering of 55 clary sage EO accessions (from literature) shows the presence of several chemotypes: linalyl acetate+linalool, linalyl acetate+sclareol, linalool+geranyl acetate, germacrene D+β-caryophyllene, caryophyllene oxide, and three unspecified chemotypes (geranyl acetate, methyl chavicol, and α-terpineol). According to this classification, clary sage cv “Domaća mirisna” belongs to a moderate linalyl acetate chemotype (between 19.8 and 45.7%). Further investigations need to focus on clary sage HY and their potential applications because HYs could increase economic gain as a by-product. However, their utilization for other purposes (cosmetic, postharvest fruit processing, organic agriculture, etc.) could be a safe solution for wastewater produced during EO distillation.
PB  - Taylor & Francis
T2  - Journal of Essential Oil Bearing Plants
T1  - Comparison of volatile compounds from clary sage (Salvia sclarea L.) verticillasters essential oil and hydrolate
EP  - 570
IS  - 3
SP  - 555
VL  - 25
DO  - 10.1080/0972060X.2022.2105662
ER  - 
@article{
author = "Aćimović, Milica and Lončar, Biljana and Jeliazkov, Valtcho and Pezo, Lato and Ljujić, Jovana and Miljković, Ana and Vujisić, Ljubodrag",
year = "2022",
abstract = "The volatile compounds of essential oil (EO) and corresponding hydrolate (HY) extracted by steam distillation from clary sage (Salvia sclarea L.) cv “Domaća mirisna” grown in Serbia were identified using gas hromatography/mass spectrometry (GC/MS). The most abundant compounds of EO were linalyl acetate (43.5%) and linalool (25.9%), followed by α-terpineol, germacrene D, and geranyl acetate. In the corresponding HY (recovered water-soluble fraction of EO) the dominant were linalool (63.3%) and α-terpineol (26.8%), followed by geraniol. These differences in composition between clary sage EO and HY could be explained by linalyl acetate's low water solubility. Clustering of 55 clary sage EO accessions (from literature) shows the presence of several chemotypes: linalyl acetate+linalool, linalyl acetate+sclareol, linalool+geranyl acetate, germacrene D+β-caryophyllene, caryophyllene oxide, and three unspecified chemotypes (geranyl acetate, methyl chavicol, and α-terpineol). According to this classification, clary sage cv “Domaća mirisna” belongs to a moderate linalyl acetate chemotype (between 19.8 and 45.7%). Further investigations need to focus on clary sage HY and their potential applications because HYs could increase economic gain as a by-product. However, their utilization for other purposes (cosmetic, postharvest fruit processing, organic agriculture, etc.) could be a safe solution for wastewater produced during EO distillation.",
publisher = "Taylor & Francis",
journal = "Journal of Essential Oil Bearing Plants",
title = "Comparison of volatile compounds from clary sage (Salvia sclarea L.) verticillasters essential oil and hydrolate",
pages = "570-555",
number = "3",
volume = "25",
doi = "10.1080/0972060X.2022.2105662"
}
Aćimović, M., Lončar, B., Jeliazkov, V., Pezo, L., Ljujić, J., Miljković, A.,& Vujisić, L.. (2022). Comparison of volatile compounds from clary sage (Salvia sclarea L.) verticillasters essential oil and hydrolate. in Journal of Essential Oil Bearing Plants
Taylor & Francis., 25(3), 555-570.
https://doi.org/10.1080/0972060X.2022.2105662
Aćimović M, Lončar B, Jeliazkov V, Pezo L, Ljujić J, Miljković A, Vujisić L. Comparison of volatile compounds from clary sage (Salvia sclarea L.) verticillasters essential oil and hydrolate. in Journal of Essential Oil Bearing Plants. 2022;25(3):555-570.
doi:10.1080/0972060X.2022.2105662 .
Aćimović, Milica, Lončar, Biljana, Jeliazkov, Valtcho, Pezo, Lato, Ljujić, Jovana, Miljković, Ana, Vujisić, Ljubodrag, "Comparison of volatile compounds from clary sage (Salvia sclarea L.) verticillasters essential oil and hydrolate" in Journal of Essential Oil Bearing Plants, 25, no. 3 (2022):555-570,
https://doi.org/10.1080/0972060X.2022.2105662 . .
7
6