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ABSTRACT
Domestication of orphan crops could be explored by editing their genomes. Genome editing has 
a lot of promise for enhancing agricultural output, and there is a lot of interest in furthering 
breeding in orphan crops, which are sometimes plagued with unwanted traits that resemble wild 
cousins. Consequently, applying model crop knowledge to orphan crops allows for the rapid 
generation of targeted allelic diversity and innovative breeding germplasm. We explain how 
plant breeders could employ genome editing as a novel platform to accelerate the domestication 
of semi-domesticated or wild plants, resulting in a more diversified base for future food and fodder 
supplies. This review emphasizes both the practicality of the strategy and the need to invest in 
research that advances our understanding of plant genomes, genes, and cellular systems. Planting 
more of these abandoned orphan crops could help alleviate food scarcities in the challenge of 
future climate crises.
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1. Introduction

Orphan crops are also known as ‘underutilized,’1, 

‘minor,’2, ‘neglected,’3,4 ‘promising’ (for emerging 
markets or because of previously unrecognized valu
able traits), ‘niche’ (of marginal importance in pro
duction systems and economies) and/or ‘traditional’ 
(used for centuries or even millennia) crops.5 These 
crops show many important characteristic features 
and are very much fitting to be grown as cash crops. 
Ironically, these crops are less familiar globally, pri
marily due to less attention paid by researchers, 
leading to inadequate or total lack of genetic and 
genomic resources. Despite the negligence in 
research and investment, they still have the potential 
to tackle multiple UN Sustainable Development 
Goals (such as zero hunger) in the low-income 
nations of Africa,3 Latin America, and Asia,3 and 
also in the growing western consumers interested 
in new healthier foods.6

Most orphan crops are resilient and can grow on 
extreme soil and climatic conditions as they possess 
relevant alleles and mechanisms to combat stress 
conditions,7 potentially lost from major crops.8 In 
due course of time, it has been recognized that 
orphan crops possess resilience traits9 and can be 
used to improve major crops as well as play an 
essential role in enhancing the sustainability of 
food systems6,10,11 which in turn has resulted in 
the launch of advanced research and development 
initiatives.4 It has also been seen that orphan crops 
possess other traits of importance that include 
nutrition,6 biofuel,12 medicinal value,13 

cosmetics,14 and feed/fodder.15

The research and breeding efforts were majorly 
focused on some of the few crops on which the 
world’s food supply relies, like rice, wheat, maize, 
soy, and potato. For instance, by identifying the 
wild rice allotetraploids, the important wild sources 
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of de novo domestication can be used by tissue 
culture, transfronation and genome editing systems 
to domesticate the wild rice races.16 In addition to 
these crops variety of orphan crops was also grown 
by small farmers.17,18 Orphan crops are a set of 
nutritious, tasty, and well-adapted species but, due 
to wild characteristics, are often unsuited to inten
sive agriculture.19,20 Orphan crops possess many 
characteristics and can be a lifesaver to the millions 
who go to bed hungry every night.20 Besides, 
orphan crops served as resource material for agri
cultural research to further increase the stress tol
erance of major food crops and also brought 
diversity to agriculture.20 In addition, it also 
favored shifting food habits of modern agriculture. 
It has been proven that most orphan crops such as 
buckwheat (Fagopyrum esculentum), cassava, 
banana, and quinoa are not only important for 
food and feed but also hold great potential for 
industrial applications, effective management and 
have contributed toward poverty reduction and 
global food security.21,22 Conventional breeding 
for quality enhancement in orphan crops is chal
lenging, while genetic manipulation via guided 
nucleases has proven an ideal platform for improv
ing orphan crops23–25 (Fig. 1). This robust domes
tication was used to tackle changing climate 
scenarios and growing food security issues. 
Therefore, the current review aims to emphasize 
the practicality of the strategy and the need to 

invest in exploring the genomes, proteomics, and 
other omics studies to unravel their potential as 
frontline crops. In our investigation and explora
tion, we have discussed the updated account on 
orphan crops and their potential to act as buffering 
agents for securing nutrition and food security at 
global level. More importantly, we have detailed 
their social, ethical and legal point of consideration 
to have a global overview to make sure their role as 
multidimensional crops for future.

2. Orphan Crops: A Rich Repository Crop for 
Food and Nutritional Security

Orphan crops (crops for the future) are cultivated 
in very limited regions at global level. The reason 
for this low cultivation may be due to less research 
involved in to unravell their resilient 
characteristics.4,6,26,27 The worldwide economic 
value of orphan crops is limited but is extremely 
important at local levels, especially in developing 
countries.9 These crops mainly include cereals, 
pseudo cereals, legumes, and root crops, contribut
ing to food and nutritional needs worldwide. These 
crops possess many properties like being resilient to 
biotic and abiotic stresses, high nutritional and 
medicinal value, and high photosynthetic effi
ciency. Examples of orphan cereals that utilize 
highly efficient C4 photosynthesis pathways include 
foxtail millet, pearl millet, broomcorn millet, 

Figure 1. General considerations and future strategies employed for development of resilient crops using wild repository of orphan/ 
underutilized crops.
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barnyard millet, fonio millet, adlay, finger millet, 
and tef.28–30 C4 photosynthesis promotes the effi
cient use of nitrogen and water by reducing photo
respiration to a minimum in hot and arid climates 
compared to C3 photosynthesis. Wild relatives also 
adopt the C4 pathway.31 Some of the orphan crops 
and their characteristic properties are given in 
Table 1.

Orphan crops, as already discussed, possess 
many important features and can be a lifesaver to 
the millions of hungry humans on global scale. As 
stress-tolerant in nature, these crops can grow 
under unpredictable changing climates and ensure 
yield when major crop varieties fail, thus ensuring 
food security for small farmers. Besides, orphan 
crops served as resource material for agricultural 
research to further increase the stress tolerance of 
major food crops and also brought diversity to 
agriculture. In addition, these crops also favored 
shifting food habits of modern agriculture.31,53 It 
has been seen that orphan crops and their wild 
relatives possess many beneficial traits compared 
to major crops, which can be used to overcome 
different problems of modern agriculture and help 
make the practice more sustainable. Since most of 
these crops were well suited to grow in poor and 
marginal lands, there was little need for irrigation 
and fertilizers to boost their productivity. 

Coupling these crops with various sustainable 
agricultural techniques such as crop rotation and 
intercropping have been proven to be the best 
approaches to maintain a high yield of industrial 
agriculture while having a minimal ecological 
impact.54 Intercropping of some orphan crops 
like quinoa with beans, corn, and tarwi improved 
its yield and helped in pest control.55 Crop rota
tion of broomcorn millet with other crops pre
vented diseases/posts, helped in weed control, 
and helped maintain soil moisture.56

Despite possessing these properties, some 
orphan crops are still not domesticated and pos
sess a lot of potential in terms of quality and 
quantity of yield. Domestication of various crops 
through past approaches can lead to the faster 
improvement of orphan crops.57 In addition to 
these approaches latest developing techniques 
like high-throughput sequencing and genome 
editing can play an important role in the genetic 
improvement and manipulation of these minor 
crops. These crops possess many properties like 
being resilient to biotic and abiotic stresses, high 
nutritional and medicinal value, and high photo
synthetic efficiency. As orphan crops are already 
comparatively more stress tolerant and nutri
tious, domestication efforts must mainly concen
trate on boosting the yield.49,57 Some gene- 

Table 1. Showing the detail of major orphan crops and their characteristic traits considered for domestication 
process.

Orphan crop Scientific name Characteristic trait References

African rice Oryza glaberrima Stress tolerance 32

Amaranth Amaranthus spp. Nutrition 33

Bambara groundnut Vigna subterranean Nutrition; Drought tolerance 34

Barnyard millet Echinochloa crusgalli Abiotic stress tolerance 35

Buckwheat F. esculentum Nutrition 36

Cassava Manihot esculentum Drought tolerance 37

Chickpea C. arietinum Nutrition 38

Cowpea Vigna unguiculata Nutrition; Drought tolerance 39

Enset Ensete ventricosum Drought tolerance 40

Foxtail millet Setaria italica Abiotic stress tolerance 41

Grass pea Lathyrus sativus Nutrition; Extreme drought tolerance 42

Horsegram Macrotyloma uniforum Nutrition 43

Kodo millet Paspalum  
scrobiculatum

Abiotic stress tolerance 43

Lentil Lens culinaris Nutrition 44

Linseed Linum usitatissimum Nutrition 45

Little millet Panicum sumatrense Abiotic stress tolerance 35

Okra Abelmoschus esculentus Nutrition; Biotic stress tolerance 46

Pearl millet Pennisetums glaucum Abiotic stress tolerance 47

Pigeon pea Cajanus cajan Nutrition 48

Proso-millet Panicum miliaceum Abiotic stress tolerance 41

Quinoa C. quinoa Nutrition 49

Sweet potato Ipomoea batatas Nutrition 50

Tef Eragrostis tef Gluten-free; Abiotic stress tolerance 51

Yam Dioscorea spp. Drought tolerance 52
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controlling characteristics often conserved 
include grain size, weight, and height, and they 
can be directly targeted using advanced genome 
editing techniques like clustered regularly inter
spaced short palindromic repeats (CRISPR/Cas9) 
systems (Fig. 2). Sequencing the genome of these 
crops leads to large-scale improvement of these 
crops and makes them available publicly. In 
addition, this also served as a solid foundation 
for the modifications and development of these 
crops via various techniques like molecular 
breeding and genome editing.49

3. Genomic Information on Orphan Crops

The molecular breeding has been revolutionized 
due to the advance in genomics and genome editing 
technologies.58–61 The valuable information of 
genomic data gained from high-throughput 
sequencing and computational analysis can be 
accomplished to identify desirable traits incorpo
rated in wild relatives of crop plants.59,61 Many 
initiatives have been taken for advanced research 

and development of orphan crops. Different insti
tutions have taken the step for the detailed analysis 
of some crops; 101 orphan crops have been selected 
by African orphan Crops Consortium (AOCC) for 
detailed studies and whole-genome sequencing.62 

Next-generation sequencing, in which whole- 
genome sequencing is also available for many 
crops and their wild relatives, has proven an effi
cient way of facilitating the domestication of genes. 
Thus, crop improvement has been 
“democratized.”63 The availability of whole- 
genome sequencing provides information about 
ortholog identities and selective sweeps and is an 
essential requirement for both source and recipi
ents of allelic variance. In addition, this application 
of high-quality sequencing provides necessary 
information about three features of domestication, 
which are genomic structural variation, transposa
ble elements, and gene as well as whole-genome 
duplications.64 Studies have shown that genomic 
structural variation concerns some important agri
cultural traits, copy number variation like variation 
in vernalization and flowering time in wheat65 and 

Figure 2. The figure shows the use of genome editing technologies applied for speeding up the domestication process such that food 
security will be attained in future.
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barley freezing tolerance.66 At high frequencies, 
transposable elements are present all over the 
whole genome.67 Whole-genome duplication has 
also proven significant by revealing almost 200 
crops and over 2000 wild species.68 In recent 
years, significant achievements in genome sequen
cing have been achieved in the grass family, and 
reference genomes of at least 11 cereals have been 
published. The orphan cereal which was first 
sequenced was foxtail millet.69 Sequencing of 
orphan legumes has also been done, and at least 
the genome of 16 orphan legumes have been 
sequenced; the orphan legume whose genome was 
first sequenced was pigeon pea.26 The genome of 
other orphan crops, which has also been sequenced, 
includes pseudocereals amaranth,70 buckwheat, 
and quinoa71 and the root crops cassava,72 sweet 
potato,73 and yams.74 Besides genome sequencing, 
transcript profiling, epigenetics studies, and the use 
of metabolomics also provide considerable insight 
into domestication.57,64,75

4. Omics Studies and Their Utilization for 
Desired Genome Editing

Genome sequencing technologies have under
gone rapid evolution, which enables the explo
sion of large-scale data at each level of 
information that is from gene sequence, tran
scriptome, proteome, epigenome as well as meta
bolite patterns that usually determine the 
variability in cellular networks and functions at 
the systems level.75–79 The information gained 
by the multi-omics approach can be integrated 

to pinpoint the molecular determinants and pro
vide a platform to improve crop yield and qual
ity traits in orphan crops.80

The genome of orphan crops was well annotated 
by whole-genome sequencing projects that were 
often coupled with generating respective transcrip
tomes. The transcriptomes that were mainly pre
ferred for annotation were taken from the same 
species as was done for the African eggplant,81 

wild mustard (Brassica juncea),82 and tef 
(Eragrostis tef)28; however, some other cases were 
also seen where there was lack of resources, existing 
transcriptome of a close relative or well-annotated 
transcriptome of a model crop was used as seen in 
finger millet, the genome was annotated by using 
data from maize.30 Some of the other transcrip
tomes of these crops have also been generated in 
response to specific biological questions, and RNA 
sequencing (RNA-seq) has become the method of 
choice.83 Researchers identified at least 2416 differ
entially expressed genes while profiling for 
response against salt stress in quinoa 
(Chenopodium quinoa).84 Transcription analysis 
was done in jute-mallow to identify drought stress- 
related genes.73 Before the introduction of next- 
generation sequencing (NGS), microarrays were 
the methods of choice for transcriptome analysis. 
They were applied in different orphan crops to 
detect expression profiles relevant to abiotic stress 
resilience. These crops of interest include 
buckwheat,85 tef,85 white lupine,86 African night
shade (Solanum nigrum),87 and wild mustard.88 

Epigenetics is a branch of science that deals with 
studying heritable gene regulation. The epigenetic 

Figure 3. Displays the rich salient attributes of orphan crops fitting to human health and sustainable agricultural development for food 
and nutritional security.
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changes do not involve DNA sequences but occur 
by the modifications caused by DNA methylation 
or post-translational modification of histone tails. 
These changes are believed to play an important 
role in gene expression and plant development 
under stress conditions (Fig. 3). The most impor
tant genomic approach, ChIP-chip (followed by 
microarray hybridization), was mainly used for 
analyzing epigenetic changes. Still, in recent years 
this approach was replaced by NGS technologies 
with ChIP-sequencing (ChIP followed by direct 
sequencing). Studies have shown that several epi
genetic changes have contributed to crop 
domestication.

Several epigenetic modifications have been 
found to contribute to crop domestication; for 
example, the colorless non-ripening locus in 
tomatoes is induced by silencing an epiallele of 
a SQUAMOSA promoter binding protein-like 
transcription factor.89 Epialleles have also been 

linked to melon sex,90 rice plant height,91 cotton 
photoperiod sensitivity,92 and oil palm somaclo
nal variation.92,93

In addition, genome-wide analyses of the methy
lomes of significant crop species indicate that the 
bulk of these alterations is substantially conserved 
within a species.94 The use of metabolomics in the 
study of domestication is relatively new, but it is 
widely utilized in quantitative trait loci (QTL) 
investigations95; it is becoming a mainstay for under
standing the genetics of quality traits in crops.96,97 

Nonetheless, two studies address how domestication 
and agricultural development influence the metabo
lome. First, a comprehensive analysis of alterations 
in primary metabolism in farmed wheat and its 
progenitor species revealed that the domestication 
of emmer and durum wheat, respectively, is accom
panied by changes in unsaturated fatty acid and 
amino acid content.98 Secondly, a multi-omics ana
lysis of fruit from several hundred tomato genotypes 

Figure 4. Showing the stepwise strategies to popularize the orphan crops for food and nutritional security.
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demonstrates how domestication has affected the 
metabolite composition of this fruit.99

5. The Role of Genome Editing Technologies in 
the Orphan Crops Improvement

Genome editing has proven to be a powerful tool 
for crop improvement and functional genomics. 
Several gene-editing techniques have been widely 
used, including zinc-finger nucleases (ZFNs), tran
scription activator-like (TAL) effector nucleases 
(TALENs), and CRISPR/Cas9 and Cpf1. The aim 
of these techniques relies on the future improve
ment of plant sciences and the rapid remodeling of 
crops. Genome editing via CRISPR has become 
popular because of its versatility, potency, ade
quacy, and simplicity.23,100,101

Improvement and domestication of crops have 
become possible due to the availability of genomic 
information and efficient genome editing tools102 for 
the domestication of these crops. Genome editing 
technologies played an important role in improving 
orphan crops by identifying important mechanisms 
and gene targets for domestication and making it 
possible to modify these crops in a targeted manner. 
CRISPR-mediated genome editing has proven more 
advantageous as it produces potentially ‘transgene- 
free’ crop varieties and provides a platform to create 
genetically modified varieties identical to convention
ally bred crop varieties. For several cultivated species, 
the path of domestication has become evident due to 
the noble intervention of genetic and genomic 
analyses.57 Editing plant genomes with extreme pre
cision and accuracy are achieved by combining gen
ome editing technologies, viz. CRISPR/Cas9. The 
CRISPR system is not entirely accepted as its accep
tance is controversial, but despite this, it still holds 
great potential in improving crop varieties and 
improving farmer’s livelihood. DNA manipulation 
via CRISPR/Cas9 can be done in many ways like by 
causing random mutations (insertion or deletion) via 
non-homologous end joining for disruption of genes 
by the involvement of precise base editors to generate 
targeted point mutations or by whole-gene insertion 
employing the cell’s homology-directed repair 
pathway.100 Multiplex approaches enabled research
ers to edit multiple loci simultaneously and made it 
possible to incorporate multiple traits at once.103

Domestication of orphan crops is a complicated 
process as it requires well-elucidated genome 
sequence that gives a clear understanding of para
logue structure and expression of genes, and 
a delivery system for genome editing. Among 
them, a transformation system is the simplest. 
Due to multigenic regulation of the same traits in 
orphan crops, their domestication is somehow 
limited.104 Many domestication genes like that con
trol flowering and fruit development, increase har
vest index (more product per plant), facilitate 
harvesting by inhibiting abscission of fruits, or 
make the final product easier to store, chew, and 
digest have been identified in many crop species.102 

Studies have shown that mutations played an 
important role in altering the function of a few 
selected loci, known as domestication genes. Also, 
it has been revealed that many domestication traits 
possess a Mendelian inheritance pattern involving 
gain-of-function or loss-of-function mutations, 
which made it possible to modify/reconstruct 
these traits into suitable ones with the help of gen
ome editing technologies, viz. CRISPR/Cas9 gen
ome editing technology.105 First, the applications of 
CRISPR/Cas9 were limited to creating only dele
tion. Still, modern variants of CRISPR-based gen
ome editing technologies are more advantageous 
due to new modifications and can produce targeted 
insertions, exchange amino acids, and modulate 
gene expression. The variants generated by manip
ulating just a small number of loci were best suited 
to full agricultural exploitation. Also, they demon
strated the feasibilities for crop improvement that 
can be achieved through a combination of geno
mics and gene editing. Knockout may be inade
quate in many cases and may need subtler alleles 
like altering promoter activity or protein structure. 
Production of alleles with new and valuable expres
sion properties can be achieved by editing promo
ter segments.106 Manipulating several genes with 
the connected combinatorial challenge of testing 
many variables leads to the acceleration of domes
tication. Hence, genome editing has been 
a powerful tool for domestication of wild plants 
and reuniting lost but desirable traits that include 
nutritional features or stress tolerance, yield poten
tial, and other agronomically valuable 
characteristics.107
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With the CRISPR/Cas9 approach, some success
ful cases of orphan crop breeding and domestica
tion of wild relatives have been reported recently. 
Scientists developed genomic resources and effi
cient transformation methods for orphan crop 
groundcherry (Physalis pruinosa) belonging to the 
Solanaceae family. They then mutated the genes 
orthologues to tomato domestication and 
improved genes using the CRISPR-Cas9 system to 
improve productivity-related traits.108 The targeted 
genes include plant architecture, fruit size, and 
flower production. Studies have shown that manip
ulation via CRISPR/Cas9 in wild tomato 
(S. pimpinellifolium) involved editing six loci that 
were important for yield and productivity in pre
sent-day tomato crop lines.109 These modifications 
proved very beneficial, like increased fruit size 
threefold, fruit number tenfold, and a two-fold 
increase in fruit lycopene accumulation compared 
to its wild parent. CRISPR/Cas9 system gained 
prominence, and it has also been seen that through 
this approach, several types of orphan crops can be 
modified and have been successfully used in foxtail 
millet,110 green foxtail,111 and cassava.112

5.1. Prospective Applications of CRISPR System in 
Cassava Breeding: A Case Study

Cassava (M. esculenta), which is an important sta
ple food, is grown worldwide and is a significant 
orphan crop not only for providing food security to 
tropical and subtropical regions but also being the 
predominant raw material for the starch industry 
and also provides up to 50% of the total intake 
calories for over 800 million people worldwide.113 

It possesses many resilient characteristics, like 
being tolerant to unpredicted drought, growing 
very well in poor soils, and can be harvested any 
time of the year. Also, it is advantageous as its 
tubers can be retained for up to two years in soil 
without rotting.114 Despite possessing many prop
erties, its yield is low, so many attempts are made to 
increase its yield, but compared to mainstream 
crops like rice, in cassava, there are only a few 
studies on the validity of the CRISPR technique. 
Recently many genome editing projects involving 
CRISPR/Cas9 have been completed to increase the 
yield of cassava, including disease resistance, herbi
cide tolerance, rapid flowering, and reduced 

cyanide content leaves and roots.115 Disease- 
causing pathogens majorly cause the loss of yield 
in cassava. Up to 50% of the total yield loss is 
mainly caused by the African cassava mosaic virus 
(ACMV) and cassava brown streak disease (CBSD). 
So to overcome these problems, different strategies 
have been developed, viz. targeted mutation using 
Cas9/gRNA.116 Gene editing of two isoforms of 
elF4E, nCBP-1 and nCBP-2, were done simulta
neously, resulting in heritable delayed and sup
pressed CBSD aerial symptoms and reduced 
severity and frequency of storage root necrosis. 
Resistance against ACMV in cassava was achieved 
by knockout of the AC2 gene resulting in 33–48% 
evolution of the gene by forming transgenic lines. 
Studies have also shown that during glasshouse 
inoculation CRISPR system does not provide effec
tive virus resistance.112

CRISPR/Cas9-mediated gene insertion and 
replacement techniques have majorly developed 
herbicide-resistant crop varieties. In cassava, herbi
cide resistance was developed by HR and NHEJ 
DNA repair pathways by substituting crucial 
amino acids in the conserved domain of 5-enolpyr
uvylshikimate-3-phosphate synthase in order to 
give resistance against glyphosate-based herbicides 
(EPSPS)117 and produce phenotypically normal 
glyphosate tolerant cassava. This method also pro
vided knowledge about gene editing techniques for 
the further modification and improvement in 
cassava.118 Recent studies have also shown that 
many attempts were made to develop cassava that 
can be used to visualize the early stages of CBB 
infection in vivo.119 CRISPR-mediated homology- 
directed repair (HDR) was also used to generate 
plants with scarless insertion of GFP at the 3’ end of 
the CBB susceptibility (S) gene MeSWEET10a. 
These are successfully visualized at transcriptional 
and translational stages.

5.2. Trait Improvement via CRISPR/Cas9

In cassava, two isoforms of MESSIII genes, 
MESSIII-1 and MESSIII-2, were mutated simulta
neously using CRISPR/Cas9 system, resulting in 
cassava with edited genes related to the starch 
synthesis pathway.110 This research provides 
a platform to examine the role of genes in 

8 H. YAQOOB ET AL.



regulating amylopectin glucan synthesis in cassava. 
Studies have also shown that two amylose synthesis 
genes, PTST1 and GBSS, can reduce or remove 
amylose content in root starch by using CRISPR/ 
Cas9-mediated targeted mutagenesis. Flowering in 
cassava was also accelerated by incorporating the 
Arabidopsis FLOWERING LOCUS T gene into the 
genome editing cassette, which was generally unu
sual in glasshouse conditions.120 Researchers also 
achieved activated acceleration of cassava flowering 
in cassava by using CRISPR/Cas9 mediated disrup
tion of Multiple TFL-like Floral Repressors.121

During cotyledon-stage somatic embryogenesis, 
the mutants were phenotypically albino, which pro
vided a good idea about gene’s role in plants using 
CRISPR/Cas9-mediated genome editing technol
ogy to target the phytoene desaturase (MePDS) 
gene in cassava. Using CRISPR/Cas9-mediated 
genome editing technology to target the phytoene 
desaturase (MePDS) gene in cassava, researchers 
could determine the relevance of the gene in the 
plant due to the albino phenotype of mutants dur
ing cotyledon-stage somatic embryogenesis. This 
prevented the requirement for gene sequencing to 
prove that a mutation had happened in the target 
gene.122 Therefore, it provided a helpful arena for 
testing and enhancing CRISPR/Cas9 and other 
genome editing methods in cassava.

6. Different Strategies to Domesticate Orphan 
Crops to Develop Future-ready Crops

Most of the world’s population depends on a few 
species of crops like rice, maize, wheat, potato, and 
soy to meet the food and nutritional demands, so 
research and breeding efforts are mainly focused on 
these crop varieties. Some varieties of tasty, nutri
tious, and well-adapted orphan crops are also 
grown. Still, their cultivation is limited cause of 
their wild characteristics and can be domesticated 
by following strategic steps (Fig. 4). Many attempts 
were made to explore the domestication of these 
orphan crops, most suitable for genome editing 
techniques. Genes of P. pruinosa (groundcherry), 
an orphan crop, are modified to explore its domes
tication, especially the modification of those genes 
carried out whose orthologues control the domes
tication traits in the close relatives.108 The results 
showed the power of this approach and 

demonstrated the importance of identifying 
mechanisms and gene targets. The path of domes
tication from wild ancestors to modern crops has 
become possible for several cultivated species with 
the help of genetic and genomic analysis.102 Studies 
have shown that mutations that alter the functions 
of a few selected loci, known as domestication 
genes, have played a determining role. Wild teo
sinte and modern maize alleles at a few major loci 
are responsible for much of the difference.102 

Several domestication genes control flowering and 
fruit development, inhibiting the abscission of 
fruits and thus facilitating harvesting, increasing 
harvest index (more product per plant), and mak
ing the final product easier to store, chew, and 
digest have been found in different crop species. 
Manipulating these traits has proven an outstand
ing achievement in revolutionizing the domestica
tion of different crop species.102 Neolithic gatherers 
selected other traits like loss-of-shattering uninten
tionally. Increased food availability and domestica
tion of crops enabled the flourishing of sciences, 
arts, and technology. Flourishing of sciences, arts 
and technology have emerged by the increase in 
food availability and domestication of crops. Most 
of the improvements of our stable crops are based 
on Neolithic selection, but recently other improve
ments are also seen, like semi-dwarfism in wheat 
and rice. The combination of spontaneous muta
tion in SELF-PRUNING in tomato was radically 
altered to enable its mechanical harvesting.

The availability of genomic information and effi
cient genome editing tools played an important role 
in exploring crop domestication and 
improvement.18,102 Through these modifications, 
wild species and unimproved crops can also be 
modified in a targeted manner to produce novel 
and improved crops. An orphan crop groundcherry 
(P. pruinosa), which belongs to the solanaceous 
species, produces small but tasty berries. Due to 
its wild characteristics like sprawling habit, husked 
and small fruit, and strong fruit abscission, it can
not be grown on an agricultural scale.123 

Researchers saw an opportunity: is it possible to 
achieve the corresponding gains in this sister spe
cies by modifying the known gene targets of tomato 
domestication. They increased the number of flow
ers and delimited flowering time on both primary 
and axillary shoots by targeting repressors of the 

GM CROPS & FOOD 9



florigen pathway by gene editing techniques.108 

Knocking out many genes has shown great results, 
like knocking out a classical improvement gene; 
SELF-PRUNING, which controls indeterminate 
versus determinate growth in tomato, has proven 
very beneficial and resulted in extreme compact
ness. Knockout of another gene, SP5G, a florigen 
repressor, has increased axillary flowering and fruit 
destiny, although it does not affect a primary 
shoot.108 Scientists also targeted the pathway 
which regulates shoot apical meristem size by the 
interaction of CLV3, a small peptide with its recep
tors (CLV1 and others) known as the CLAVATA 
pathway. Knocking out of CLV1 had shown effec
tive results, viz. flower meristem size was increased, 
additional flower organs and two-locule fruit was 
converted to larger, three-locule fruit. These mod
ifications generate variants most suited to full agri
cultural exploitations. These manipulations also 
gave a great idea about the possibilities of combin
ing genomics and gene editing of just a small num
ber of loci.108 These studies also demonstrate the 
challenges that ‘domesticators will encounter.

Most important is to predict those targeted mod
ifications that will generate the ideal phenotype. By 
understanding the domestication history of crops 
closely related to orphan crops, information about 
the target identity can be achieved. The structure of 
gene networks varies per node number, type, and 
connection.124 Breeders and geneticists have identi
fied that genetic modifiers present in the population 
can dramatically alter mutation phenotype. It was 
demonstrated by dwarfing effect in groundcherry by 
SELF PRUNING knockout or by the inability of 
SP5G manipulation to modify primary shoot flower
ing. Knockout may not be sufficient in some cases 
and may need subtler alleles like altering promoter 
activity or protein structure. Production of new 
alleles with new and valuable expression properties 
can be achieved by editing promoter segments.106

Due to multigenic regulation of the same traits in 
orphan crops, their domestication is limited.104 All 
things were considered that were important for 
taming of wild species. The work carried out by 
Lemmon et al. explained the approach’s feasibility 
and the importance of investing in research and 
enhanced information on genomes, genes, and cel
lular mechanisms behind plant traits. Some orphan 
crops serve as better candidates for gene 

manipulations than others, and some traits will be 
easier targets than others. This information and 
essential tools for manipulating DNA may serve 
as the ingredients for success. Accelerated domes
tication involves the manipulation of several genes 
with the connected combinatorial challenge of test
ing many variables.

Lastly, the faster domestication envisioned here 
may include the manipulation of several genes and 
the associated combinatorial difficulty of evaluating 
numerous factors. In reality, domesticated species 
may owe at least some of their success to their 
greater ease of genetic manipulation. If crucial 
domestication features were monogenic and vari
able in the progenitor, they would have been readily 
evident and selected by breeders. Optimistically, 
faster domestication will be an essential component 
of the survival toolkit, the collection of technologies 
required to sustain human civilization. At 
a minimum, understanding how domestication 
genes function in various animals will improve 
established crops.104

7. Available Genetic Improvement Methods for 
New and Orphan Crops

7.1. Advanced and Conventional Breeding

The suitable approaches for genetic improvement 
and modification of any particularly new or orphan 
crop depend on the ideotype targets, good knowl
edge about inheritance, and genetic architecture of 
defining traits. The marker-assisted selection was 
widely used to develop major crops and has also 
begun to be applied to minor crops, that is, orphan 
crops. Examples of annual orphan crops include 
pigeon pea26 and foxtail millet,111 as also a wide 
range of perennial plants.125,126 However, in most 
cases, relatively high costs of phenotyping remain 
a constraint.59

In most instances, the comparatively high costs 
of phenotyping continue to be a barrier.59 This is 
especially true for perennial crops, whose evalua
tion requires several years of growth and whose 
huge life forms necessitate extensive area in field 
trials. Using genome-wide association scans, Cichy 
et al.59 revealed genomic sites linked with variance 
in the so-called ‘cooking time characteristic’ in 
a common bean diversity panel.127 Due to relatively 
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substantial research expenditures, the common 
bean is arguably not precisely an orphan crop, but 
it is emblematic of other orphan legumes. The dis
covery of connections between some genomic 
regions and cooking time in legumes is significant 
since extended cooking durations restrict the seed’s 
efficiency as a food source.

Cichy et al.59 found statistically significant asso
ciations between cooking time and single nucleo
tide polymorphisms (SNPs) on three Phaseolus 
vulgaris chromosomes, with the greatest connec
tions seen on chromosome 6 (Pv06). Pv06 had 
two homologous cation/H+ exchanger genes, one 
homologous to AtCHX3 and the other to AtCHX4. 
On cassava (Manihot esculenta), a vegetatively pro
pagated orphan annual root crop, the efficiency of 
genomic selection is now being studied.128  

Finger millet (Eleusine coracana), a seed- 
propagated annual grain, is the second example of 
an orphan crop for which this method is being 
investigated. As with conventional marker-assisted 
selection, the lack of phenotypic data from suitable 
training populations is the most significant barrier 
to applying genomic selection to novel and orphan 
crops.59 However, implementing this strategy 
might be particularly beneficial for slow-maturing 
perennial novel and orphan crops that are difficult 
to phenotype directly for crucial production 
features.125 When the underlying biological basis 
of crucial features is poorly understood, as with 
many novel and orphan crops, genomic selection 
may be very successful.

7.2. Speed Breeding

Another approach now being applied to orphan 
crops is speed breeding, which reduces the genera
tion interval in breeding programs by modifying 
the photoperiod exposure of daylength-sensitive 
plants to accelerate their development (typically 
by prolonging ‘long-day’ plants’ exposure to 
light.129 Each year, the number of probable genera
tions has been extended from three to six for the 
long-day annual legume chickpea (Cicer 
arietinum).130 Annual grain amaranth crops with 
“short days” have also proven successful.131 Speed 
breeding should be especially beneficial when used 
with genomic selection, since this enables for selec
tion during rapid cycling when complete 

phenotypic data is unavailable.132 Transportable 
‘speed breeding capsules,’ consisting of shipping 
containers retrofitted with temperature and light 
controls, irrigation systems, and greenhouse 
benches, have been proposed to lower the expenses 
of the speed breeding strategy for novel and orphan 
crops in low-income countries.9

7.3. Participatory Breeding and Selection

In high-income countries, ‘citizen science’ programs 
that analyze crop germplasm have proven effective, as 
demonstrated by,133 who investigated genotype- 
environment interactions in soybean (Glycine max) 
using data gathered by 1800 gardeners across 
Germany. Low-income countries, with larger rural 
populations and many engaged small-scale farmers, 
have an even greater opportunity for participatory 
experimentation. These communities may meaning
fully analyze genetic materials in various target habi
tats and cropping systems and give additional 
information on crop yield and consumption if they 
are appropriately maintained. Participatory domesti
cation approaches, for example, have been effectively 
used to genetically develop novel and orphan fruit tree 
crops in Central Africa, such as the semi- 
domesticated safou (Dacryodes edulis) and the incipi
ently domesticated bush mango (Irvingia gabonensis 
and I. wombolu).133 The participative technique is 
particularly beneficial in low-income countries, 
where production circumstances are variable, and 
crop preferences are little recognized.134 Both of 
these circumstances frequently apply to new and 
orphan crops.

Environmental considerations ‘Landscape geno
mic’ methods for crop growth are particularly 
important for perennial plants, which are largely 
wild populations that have evolved to local abiotic 
circumstances over many generations.135 This is 
because the ‘in situ’ decision-making process saves 
time and effort compared to traditional field test
ing. Genomic data from plants growing in wild 
populations is connected with environmental fac
tors using statistical approaches that account for 
the underlying adaptively neutral genetic structure 
induced by genetic drift.136 Established correlations 
may be theoretically utilized to screen larger germ
plasm panels for favorable allele compositions for 
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specific production circumstances. The enormous 
amount of georeferenced interpolated environmen
tal data sets currently available digitally, such as 
temperature and precipitation profiles137 and soil 
types, make comparisons easier138,139; for example, 
using soil maps to identify the soil environment as 
a critical driver of adaption in a landscape genomic 
analysis covering the native range of barrel medic 
(Medicago truncatula, a legume), with a high num
ber of SNPs associated with soil variables, including 
SNPs in candidate genes involved in nodulation/ 
symbiotic nitrogen fixation. The landscape method 
may be used for orphan crop landraces and new 
and orphan crops’ wild germplasm if local adapta
tion is presumed to have happened throughout 
orphan crop development and ecogeographical 
range expansion. A meta-analysis of various crop 
progenitors and landraces in the same geographical 
location might give comparative insights into nat
ural and human adaptation mechanisms in this 
scenario. Statistical methods that link the results 
of many common garden genome-wide association 
studies, which look into the genetic basis of pheno
type–trial site associations, with wild and/or land
race sample environment–genomic correlations are 
now available.140 This will aid in the knowledge of 
causative loci for adaptability and the development 
of appropriate tactics for new and orphan crop 
range extension.

8. Engineering Insect-Pest Resistance through 
Exploiting Crop Wild Relatives

Studies on crop wild relatives (CWRs) have 
explained the loss of resilience traits that had 
occurred during the process of crop domestication 
(manmade selection) and is also known as “domes
tication syndrome,” according to which human 
needs were fulfilled by the developing crops which 
in turn made these crops susceptible and were not 
able to combat environmental fluctuations. 
According to these studies, most germplasm- 
cultivated lack the ability to manage insect 
attacks.141 However, breeding for insect resistance 
using CWRs may prove a feasible strategy to 
increase the genetic diversity of the primary gene 
pool. Still, it has limitations as it remained unsuc
cessful in most of the crops due to the following 
reasons such as biological barriers, cross- 

incompatibility, linkage drag, and sterile embryo 
production. Different approaches like advanced 
genetic engineering tools such as transgenesis and 
genome editing were mainly used to introduce 
novel traits from CWRs into cultivated species. 
One of the essential aspects that are responsible 
for insect resistance is the identification of genetic 
variation. Comparative transcriptome and pro
teome analysis in response to insect feeding has 
proven the effective strategy for the identification 
of sequence and expression level polymorphism, 
where there is no feasibility of introgression. 
A tangible approach to introducing variability in 
the cultivated crops can be made by editing their 
genes which is based on the respective variation in 
CWRs, and it can be made feasible by using multi- 
omic strategies, firstly evaluating the variation in 
the sequences of relevant insect-responsive genes 
between the susceptible cultivated germplasm and 
the resistant wild relative. These can be successfully 
utilized for genome editing after validating resis
tance genes against the relevant pests. These 
approaches have successfully provided resistance 
in the cultivated gene pool to combat insect pests. 
Increasing research activities provided a platform 
for genome editing for insect pest management.
141,142, Resistant phenotypes using sequence varia
tion in economically important crops can be 
developed using overexpression or silencing 
strategies.142 However, developing resistance via 
genome-editing-based sequence variation has not 
yet been proved.

Crop wild relatives include the progenitors of 
crops and other species that are more or less closely 
related to them. They provided plant breeders with 
a broad pool of potentially valuable genetic 
resources, thus proving beneficial to modern agri
culture. Significant advances have been made after 
the 20 years of the Prescott-Allens’ study, which 
was based on molecular technologies and hybridi
zation procedures available for breeding and culti
var development, that allowed the incorporation of 
more distantly-related taxa, and in our knowledge 
of the wild relatives available for use in these pro
grams. The beneficial traits conferred by CWR 
genes included over 80% associated with pest and 
disease resistance. For over a century, breeders used 
wild relatives to get resistance to diseases143 and 
also searched extended gene pools for the genes 
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that would provide resistance to major crop pests 
and diseases.144,145, They incorporated wild genes 
into about 13 crops, and all except barley and 
chickpea became disease resistant after the incor
poration of wild genes. Since then, the use of this 
approach has increased steadily. Wild resistant 
traits were also used in tomatoes to develop disease 
resistance. It has been reported that this approach 
has been used at a rate of about one per year since 
1982.138 It has also been proven that the disease- 
resistant genes currently used in commercial culti
vars have been bred from wild genetic resources (D. 
Zamir, personal communication). Fungicides have 
limited effectiveness against the pathogen, so grow
ing lettuce in many parts of Europe may not be 
possible without introducing genes. However, resis
tance genes overcome these problems rapidly, and 
the breeders constantly return to wild germplasm 
for new resistance genes.146,147

9. Success Achieved in the Breeding of Orphan 
Crops

Since the beginning of the twenty-first century, 
unprecedented changes have occurred in plant 
breeding techniques. Some techniques that have 
contributed to the modernization of some of the 
crops in some regions include genotyping and 
phenotyping technologies, genomics, and analy
tics. Major crops have significantly contributed 
to the needed global increase in agricultural 
production, while orphan crops are global and 
of localized importance. The reality of orphan 
crops was that their research was limited. Also, 
there was very little knowledge available for 
orphan crops in genetics and genomics. 
Still, day by day, technologies are becoming 
more affordable and thus decreasing the cost of 
knowledge generation, often evolving the reality. 
Several international initiatives that were avail
able for breeders, like the Generation Challenge 
Programme (GCP, www.generationcp.org/ 
sunsetblog),27 provided breeders access to 
genetic and genomic technologies for some 
orphan crops and also the knowledge previously 
available only for large commercial crops.26 

Different achievements seen in different crop 
species include characterization of genetic 

diversity,148 understanding the basis of the 
genetics of agronomic traits,149 and identifica
tion of elite alleles at target genes150 for intro
gression in elite germplasm to impact crop 
performance.151 Advancements in sequencing 
orphan-crop genomes have been significantly 
achieved over the last decade61 and also focus 
on developing tools aimed at discovering and 
characterizing loci and genes of use in molecular 
breeding of those sequenced species.152

10. Digitalizing Breeding and Providing 
Support

Many attempts were made to modernize breed
ing techniques, and the modernizing approaches 
without a reliable data management system are 
very risky. Several research projects and breed
ing programs failed to achieve their goals due to 
poor data quality, lack of documentation, or lost 
institutional memory. Digitalization of breeding 
has brought several improvements, such as 
increased effectiveness of seed management, 
data capture, quality control, documentation, 
and analysis. More accuracy can be achieved in 
the selection decisions at all stages of the breed
ing process.152 It also contributed to establishing 
routines to standardize the storage of germplasm 
information that include pedigree, phenotypes 
and genotypes, breeding protocols, metadata 
(location, climate, etc.), and trait oncology, 
which in turn provide different benefits such as 
enabling data mining and also sharing of oppor
tunities across a broader range of environments 
and teams.153

11. Conclusions and Future Outlook

Recalling orphan crops, negligible and underuti
lized crops that are not frequently operated globally 
but often play greater agricultural roles more in the 
area. These crops would deliver not only a more 
varied food organization less susceptible to to cli
mate-induced inadequacies but also nourishing and 
stable food alternatives for the future. Genome 
editing of orphan crops could explore the domes
tication of these species. Domesticating an orphan 
crop plant requires multiple tools: a well-elucidated 
genome sequence, including the understanding of 
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paralogue structure and gene expression, and 
a delivery system for genome editing, the simplest 
being a transformation system. Orphan crops have 
recently gained prominence for being stress toler
ant and nutritious. Apart from being nutritious, 
these orphan crops can be grown with little agri
cultural input. Also, being stress-resilient, these 
crops are safe from the various vagaries of climate 
change and ensure yield even when other major 
crop varieties fail. Genome editing holds great pro
mise for increasing crop productivity. There is par
ticular interest in advancing breeding in orphan 
crops, which are often burdened by undesirable 
characteristics resembling wild relatives – develop
ing genomic resources and efficient transformation 
methods in the orphan crops and using CRISPR/ 
Cas9 to mutate orthologues of crop domestication 
and improve genes that control plant architecture, 
flower production, and fruit size, thereby improv
ing these major productivity traits. Thus, translat
ing knowledge from model crops enables the rapid 
creation of targeted allelic diversity and novel 
breeding germplasm in distantly related orphan 
crops. Genome editing could be used as a novel 
platform by plant breeders to speed up the domes
tication of semi-domesticated or even wild plants, 
creating a more diverse base for the sustainable 
provision of food and fodder in the future. 
Further domestication of underutilized crops may 
pave the way for rapid global food security and 
higher crop yields.
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