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Abstract: Soybean plant density is an important factor of successful agricultural production. Due to
the high number of plants per unit area, early plant overlapping and eventual plant loss, the estimation
of soybean plant density in the later stages of development should enable the determination of
the final plant number and reflect the state of the harvest. In order to assess soybean plant
density in a digital, nondestructive, and less intense way, analysis was performed on RGB images
(containing three channels: RED, GREEN, and BLUE) taken with a UAV (Unmanned Aerial Vehicle)
on 66 experimental plots in 2018, and 200 experimental plots in 2019. Mean values of the R, G, and B
channels were extracted for each plot, then vegetation indices (VIs) were calculated and used as
predictors for the machine learning model (MLM). The model was calibrated in 2018 and validated in
2019. For validation purposes, the predicted values for the 200 experimental plots were compared
with the real number of plants per unit area (m2). Model validation resulted in the correlation
coefficient—R = 0.87, mean absolute error (MAE) = 6.24, and root mean square error (RMSE) = 7.47.
The results of the research indicate the possibility of using the MLM, based on simple values of VIs,
for the prediction of plant density in agriculture without using human labor.
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1. Introduction

Field-based phenotyping can be promising for gathering information about the number of plants
per plot, which is important for the description of plant traits in agricultural practices [1]. Soybean plant
architecture is highly influenced by plant density. An insufficient number of plants per unit area results
in more branches and more pods per plant [2]. The number of plants per unit area at emergence is often
different from the number of plants in the harvest. Plant losses are usually caused by technological
operations (machinery, inter-row cultivation, mechanical weed control and pesticide application),
severe weather conditions (hay, flooding, and frost) and biotic factors (pests and diseases). Due to plant
loss, knowledge of the number of plants in the later stages of canopy development should enable a
precise approximation of the final number of plants in the harvest. The number of plants per unit area
will provide information about emergence and potential losses in plant density, which is important for
both agricultural science and production. Furthermore, the later stages of crop development provide
an extended timeframe for plant density estimation, which is not limited to the early period of crop
emergence. The usual way of obtaining data about plant density on experimental plots can be tiring

Agronomy 2020, 10, 1108; doi:10.3390/agronomy10081108 www.mdpi.com/journal/agronomy

http://www.mdpi.com/journal/agronomy
http://www.mdpi.com
https://orcid.org/0000-0001-6877-5521
https://orcid.org/0000-0002-4061-4037
http://dx.doi.org/10.3390/agronomy10081108
http://www.mdpi.com/journal/agronomy
https://www.mdpi.com/2073-4395/10/8/1108?type=check_update&version=2


Agronomy 2020, 10, 1108 2 of 10

and implies a lot of manual work. This can be avoided through the implementation of remote sensing
techniques and tools.

Unmanned Aerial Vehicle (UAV) are new instruments useful for expanding our knowledge about
precision farming and phenotyping [1]. The use of a UAV equipped with a suitable multispectral or
RGB camera (containing three channels: RED, GREEN, and BLUE) in precision agriculture has been
increasing due to the reduced use of human labor and the speed of data collection. Also, a UAV is a
cheaper and more precise alternative to satellite and airborne vehicles [3]. A lot of information can
be obtained using these machines, such as high-resolution digital elevation models (DEMs), maps of
vegetation height, or the calculation of different vegetation indices (VIs) [4,5].

Many VIs can be obtained from a multispectral camera that has five channels—RED (R), GREEN (G),
BLUE (B), NEER INFRARED (NIR), and RED EDGE (RE) or from RGB cameras. VIs derived from
multispectral camera like the Normalized Difference Vegetation Index (NDVI), Soil-Adjusted Vegetative
Index (SAVI), Enhanced Vegetative Index (EVI), or Normalized Pigment Chlorophyll Ratio Index
(NPCI) were used to provide significant information on how to improve the validation of numerous
agronomic traits like Leaf Area Index (LAI), leaf chlorophyll content, and plant senescence [6].

NDVI is based on the information derived from two spectral channels (R and NIR), which enables
assessment of different information about the crops, like determination of nitrogen use efficiency [7],
and yield estimation in wheat [8]. In previous studies, multispectral VIs like NDVI, Green Ratio
Vegetation Index (GRVI), and Wide Dynamic Range Vegetation Index (WDRVI) were implemented
in the models used for crop height and development analysis during the vegetation season [9].
Although multispectral cameras and different VIs can provide wider information about crop
development they are a relatively expensive tool, so in this study we used a cheaper but still
good alternative: a UAV with a simple RGB camera. The RGB camera is a good alternative to a
multispectral one not just because the lower price but also because of the possibility of calculating
many VIs using appropriate equations from RGB images. VIs like Excess Green (ExG), Excess Green
Red (ExGR), or Color Index of Vegetation Extraction (CIVE), obtained from RGB images were used
to distinguish vegetation from the soil which is important for classification and extraction of the
plants [10]. Also in the previously conducted studies, VIs like CIVE, ExGR, ExG, Triangular Greenness
Index (TGI), and other RGB VIs were used for early prediction of yield, lodging, and other important
soybean traits [11]. RGB and/or multispectral imagery was used for the estimation of important
indicators of crop development like biomass [12] and temperature [13]. In research on sunflowers and
maize, the ExG index obtained from RGB images taken with UAV was used for distinguishing crops
from weeds [14]. VIs calculated from RGB digital imagery were also used for obtaining the information
about LAI and biomass in cereal breeding program [15]. The extraction of green pixels from UAV
images in order to detect plant ground cover is considered a good alternative to the traditional methods,
which are destructive and require a lot of human labor [16]. Because of that and based on the many
above listed examples, in research on soybean plant density prediction we chose the following VIs:
TGI, Green Leaf Index (GLI), Normalized Green (NG), ExGR, Red Green Difference (RGD), Normalized
Green Red Difference (NGRD), Modified Normalized Green Red difference (MNGRD), and Modified
Excess Green (MExG).

The results of plant ground cover detection are improved when machine learning models (MLMs) are
also used in the detection process. The use of MLMs for image classification has been increasing [17–21].
With the information extracted from UAV images, these models can be a strong and effective tool for
the prediction of different crop parameters. One of the MLMs used for classification and calculation is
Random Forest (RF). The model is based on binary trees and can be used for correlation and regression [22].
RF uses many trees to classify a set of data, after which it calculates the predictions using data from all the
trees [23]. In previous studies, RF was used for estimation of leaf coverage in maize [24], soybean yield
prediction [25], and determination of leaf chlorophyll content in wheat [26].
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The main objective of this study was to develop an MLM based on values of simple VIs obtained
from RGB images for the prediction of soybean plant density in mid-development stages. An additional
objective of this study was to validate the model in an independent environment to test its robustness.

2. Materials and Methods

2.1. Trial Description

The trial was conducted in 2018 and 2019 on the experimental fields of the Institute of Field and
Vegetable Crops in Rimski Šančevi, Serbia. The trial was performed in both years on chernozem soil
with homogeneous texture across the entire experimental site, and these sites were deep and well
drained. In both years, standard cultivation practices were applied to the experimental field with the
sowing dates, row and seed spacing in soybean planting recorded (Table 1).

Table 1. Year and location (latitude and longitude) of the experimental trials along with the sowing
date and row and seed spacing, for the experimental trials in 2018 and 2019.

Year Site Latitude Longitude Sowing Date Row Spacing (cm) Seed Spacing (cm)

2018 Rimski Šančevi 45◦19′33” N 19◦50′10” E 6.4.2018 45 5
2019 Rimski Šančevi 45◦20′03” N 19◦50′13” E 19.4.2019 45 5

In 2018, 66 soybean genotypes, each sown on its own 8 m2 plot were used for calibration of
the MLM, while in 2019, 200 soybean genotypes, each sown on its own 10 m2 plot, were used
for model validation. In both years, trials were planted on different fields. In total, the analysis
included 266 different soybean genotypes, which were experimental lines from the soybean breeding
programs. The genotypes included in the trial represented different maturity groups and different
plant architecture.

2.2. UAV Description

The UAV platform used for collecting the RGB photos was Drone Phantom 4 (DJI, Shenzhen,
China), powered by four propellers and operated with a remote controller that runs on 2.4 GHz.
Soybean plots were filmed using an integrated camera with the following characteristics: 1/2.3” CMOS
(Complementary Metal Oxide Semiconductor) sensor with 12.4 megapixels, focal length of 8.8 mm and
1.84 cm/pixel resolution. The maximum wind speed that allows for image acquisition with the UAV
is 10 m/s. To determine the geographic position of each image, the UAV used the global positioning
systems GPS/GLONASS (Global Positioning System/Global Navigation Satellite System).

2.3. Field Based and Remote Data Collection

In 2018, the number of plants was first counted manually for each of the 66 experimental plots
and then, by dividing the total number of plants per plot by the plot area (8 m2) we calculated the
number of plants per unit area (m2) for each plot. After that, RGB photos were taken with a UAV in the
soybean development phases of four unfolded trifoliolate leaves (V4) (Figure 1a) and beginning pod
(R3) (Figure 1b). In 2019, the same data collection procedure was repeated for 200 plots for validation
of the model developed in 2018.

In both trial years, photos were taken on a sunny day, at a wind speed equal to or less than 10 m/s,
and between 10:00 and 14:00; more details about the UAV photo acquisition are given in Table 2.

In 2018, after acquisition of all the individual images in phase V4, an orthophoto of the entire trial
was created, and the same process was repeated with the images taken in the R3 phase. The same
procedure was repeated in 2019. The creation of the orthophoto involved a process of stitching together
all the individual photos, which was carried out using the open-source software WebODM [27].

The next step was the analysis of the individual plots on the RGB orthophoto through open-source
software for image analysis called Fiji [28]. First, in Fiji, the region of interest (ROI) was created on
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RGB images for 66 plots from the 2018 trial, and 200 experimental plots from the 2019 trial. After the
creation of ROI for each plot, with the Fiji’s function stack to images, RGB images were separated into
the individual channels R, G and B (Figure 2).
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Figure 1. Plot images of soybean in the V4 phase: (a) four unfolded trifoliolate leaves and the (b) R3
phase—beginning pod; images were taken with the UAV (Unmanned Aerial Vehicle) in 2018.

Table 2. Basic details about acquisition of photos.

Year Flight Date Flight Altitude (m) Soybean Development Stage Ground Resolution (cm/pix)

2018
25.5.2018 100 Four unfolded trifoliolate leaves (V4) 1.84
20.6.2018 100 Beginning pod (R3) 1.84

2019
30.5.2019 100 Four unfolded trifoliolate leaves (V4) 1.84
14.6.2019 100 Beginning pod (R3) 1.84
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Figure 2. Example of the plot image in the RGB (containing three channels: RED, GREEN, and BLUE)
color space (a) and individual channels of the same plot: R (b), G (c), and B (d) after separation of the
RGB image in Fiji.

The further step implied the extraction of the mean values from each individual channel
(R, G, and B) for every plot (ROI) in both years (2018 and 2019) and for both development phases (V4
and R3). That was accomplished using Fiji’s measure tool, which was applied to each of the three
individual channels. The individual values obtained for all experimental plots were used for the
calculation of the simple VIs, which were predictors for the MLM.

2.4. Vegetation Indices Calculated from UAV Images

Eight VIs were used for the prediction model of the number of soybean plants/m2 (Table 3).
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Table 3. Vegetation indices (VIs) used as predictors for the machine learning model (MLM). G—mean
value of the GREEN channel, R—mean value of the RED channel, and B—mean value of the
BLUE channel.

Vegetation Index Name Formula References

TGI Triangular greenness index G − 0.39 × R − 0.61 × B [29]
GLI Green leaf index (2 × G − R − B)/(2 × G + R + B) [30]
NG Normalized green G/(R + G + B) [31]

ExGR Excess green red (3 × G − 2.4 × R − B)/(R + G + B) [32]
RGD Red green difference R − G [33]

NGRD Normalized green red difference (G − R)/(G + R) [34]
MNGRD Modified normalized green red difference (G2

− R2)/(G2 + R2) [12]
MExG Modified excess green 1.262 × G − 0.884 × R − 0.311 × B [35]

2.5. Prediction Model

R package RF was used for the prediction of soybean plant density, including the following
settings (maxnodes = 50 and ntree = 100) [36,37]. To work properly, the machine learning algorithm
needs training and test data sets as input parameters.

In the first trial year, the prediction model was based on the number of plants/m2 and the VIs
calculated on the 66 experimental plots. In this case, VIs and the number of plants counted from 80%
of the randomly selected plots were used as the training set, while VIs for the remaining 20% of the
plots were used as the test set. This 80/20 data partition is done by the code that is included in the RF
model. After running the model and obtaining the predicted values of the number of plants/m2 for
20% of the plots, the obtained values were compared to the manually counted values, so as to assess
the quality of the model.

In the second trial year, VIs and the number of plants, manually counted on 66 experimental plots
in 2018 were used as training sets for model validation, while the VIs collected on 200 plots in 2019 were
used for the test set to predict the number of plants/m2. For the validation of the model, the predicted
values for 200 plots in 2019 were also compared with those counted manually. The results obtained
after the comparison were shown through the correlation coefficient (R), coefficient of determination
(R2), mean of the absolute error (MAE), and root mean square error (RMSE).

3. Results

RGB images that were collected with the UAV in both soybean trial years were of good quality
because they provided sharp orthophoto of the experimental trials in both years after a stitching
procedure and were usable for the calculation of the simple VIs. The results showed a high correlation
between the real and predicted number of plants/m2, with a relatively low mean absolute error and
root mean squared error (Table 4).

Table 4. Statistical parameters for comparison of the real and predicted number of plants/m2 for each
plot in model calibration. R—correlation coefficient, R2—correlation of determination, MAE—mean
absolute error, and RMSE—root mean squared error.

Model Calibration in 2018 Predicted Number of Plants/m2 for Each Plot

Real number of plants/m2 for each plot
R R2 MAE RMSE

0.90 0.80 3.07 3.91

The model in 2018 showed good results, however, for accepting it as a tool for prediction of the
number of plants per unit area, it is important that the model provides a similar quality in different years.
The model from 2018 was therefore evaluated the following year on the 200 experimental plots (Table 5).

Comparing the predicted and real values of number of plants/m2, it can be concluded that the high
correlation coefficient and R2 between these two variables indicates the possibility of using this model
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as a tool for digital counting of plants on experimental plots (Figure 3). Lower R2 and higher error for
model validation in 2019 were observed compared to the results obtained in the model calibration in
2018. This was expected and illustrates the effect of uncontrolled factors.

Table 5. Statistical parameters for comparison of real and predicted number of plants/m2 for each
plot in model calibration. R—correlation coefficient, R2—coefficient of determination, MAE—mean
absolute error, and RMSE—root mean squared error.

Model Validation in 2019 Predicted Number of Plants/m2 for Each Plot

Real number of plants/m2 for each plot
R R2 MAE RMSE

0.87 0.76 6.24 7.47

Agronomy 2020, 10, x FOR PEER REVIEW 6 of 11 

Table 4. Statistical parameters for comparison of the real and predicted number of plants/m2 for each 
plot in model calibration. R—correlation coefficient, R2—correlation of determination, MAE—mean 
absolute error, and RMSE—root mean squared error. 

Model Calibration in 2018 Predicted Number of Plants/m2 for Each Plot 

Real number of plants/m2 for each plot R R2 MAE RMSE 
0.90 0.80 3.07 3.91 

The model in 2018 showed good results, however, for accepting it as a tool for prediction of the 
number of plants per unit area, it is important that the model provides a similar quality in different 
years. The model from 2018 was therefore evaluated the following year on the 200 experimental plots 
(Table 5). 

Table 5. Statistical parameters for comparison of real and predicted number of plants/m2 for each plot 
in model calibration. R—correlation coefficient, R2—coefficient of determination, MAE—mean 
absolute error, and RMSE—root mean squared error. 

Model Validation in 2019 Predicted Number of Plants/m2 for Each Plot 

Real number of plants/m2 for each plot R R2 MAE RMSE 
0.87 0.76 6.24 7.47 

Comparing the predicted and real values of number of plants/m2, it can be concluded that the 
high correlation coefficient and R2 between these two variables indicates the possibility of using this 
model as a tool for digital counting of plants on experimental plots (Figure 3). Lower R2 and higher 
error for model validation in 2019 were observed compared to the results obtained in the model 
calibration in 2018. This was expected and illustrates the effect of uncontrolled factors. 

 
Figure 3. Correlation between the real and predicted number of plants/m2 for each of the 200 
experimental plots for model validation in 2019. R2—value of coefficient of determination. 

After obtaining the predicted values for 200 experimental plots in 2019, descriptive statistics 
were calculated for the real and predicted number of plants/m2 (Table 6). 

Table 6. Descriptive statistics for 200 plots for the real and predicted number of plants/m2. 

Descriptive Statistics of Number 
of Plants/m2 for 200 Plots Real Values Predicted Values 
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After obtaining the predicted values for 200 experimental plots in 2019, descriptive statistics were
calculated for the real and predicted number of plants/m2 (Table 6).

Table 6. Descriptive statistics for 200 plots for the real and predicted number of plants/m2.

Descriptive Statistics of Number of Plants/m2 for 200 Plots Real Values Predicted Values

Mean 23.94 18.24
Standard Error 0.58 0.28

Standard Deviation 8.24 4.03
Sample Variance 67.92 16.20

Minimum 3.10 4.04
Maximum 37.30 23.33

The results show a higher variability between the individual plots for the real values than between
the same plots, but with the predicted values of number of plants/m2 for each plot. This is indicated
by a higher value of standard deviation, which resulted in the higher standard error for real values
compared to the predicted ones. Also, the range between the maximum and minimum number of
plants/m2 per plot is narrower for the predicted values than for the real ones. This is mainly because of
the lower value of maximum number of plants/m2 per plot that was calculated by the prediction model.
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The number of plants/m2 manually counted on 200 plots in 2019 and the number of plants/m2

obtained from the same plots using the prediction model were subtracted; the difference is shown in
the box plot (Figure 4).
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The difference between the real and predicted number of plants/m2 for all plots varied between −5
and +18. This indicates that the prediction model underestimated the real number of plants/m2 for the
plots, which led to a positive difference between the real and predicted values, while overestimating
the real number of plants/m2 for the plots, which led to a negative difference between the real and
predicted values.

Predictions of the number of plants per unit area for the 200 plots were based on the simple VIs
and the RF machine learning algorithm. Values of the individual VIs used in the RF model derived
from the images taken in two middle phases of soybean development (V4 and R3), had a different
impact on the final result of the prediction (Figure 5). This is represented through the Increase in Node
Purity (IncNodePurity).Agronomy 2020, 10, x FOR PEER REVIEW 8 of 11 
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VIs represent two middle phases of soybean development from which the indices were obtained.
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4. Discussion

The main reason why the model underestimated the real number of plants/m2 lies in the overlap
between the plants on the denser plots, so the model could not distinguish every soybean plant
individually. For those plots that had a higher number of plants/m2 in reality, the model predicted
lower values.

On the other hand, one possible reason why the model overestimated the real values for some plots
was the presence of weeds on those plots so the model counted them as soybean plants, which resulted
in a mismatch between the real and predicted values. This indicates that, for higher precision of the
results, plots must be free of weeds so as not to disturb the prediction model.

The higher value of IncNodePurity indicates a greater influences of the variable on the final
results of the prediction [21]. On average, the values of indices extracted from the later (R3) phase
of soybean development had a greater influence as predictors than the values of the same indices
extracted from the earlier (V4) phase. This is because the plants were more robust in the R3 phase,
with more leaves, which increased the number of green pixels per plot and thus improved the index
efficiency. Still, the values of VIs calculated from phase V4 also had an important role on the final
results of the prediction, especially for indices NGRD and ExGR which were verified by their high
IncNodePurity values.

In the study, the middle phases (V4 and R3) of soybean development were used for plant density
prediction. However, in a two-year experiment on safflower, a density estimation model was proposed,
analyzing the pixel green ratio of plants that were in the of 2–4 leaves stage [38]. The results of the
study showed that better values of prediction (for 2017: R2 = 0.88; for 2018 R2 = 0.86) were obtained
during the early growth stages because of less overlapping between the plants. This indicates the
higher accuracy of the soybean prediction model if the VIs are calculated from the images of plants
in the earlier growth stages than in stages V4 and R3 when the plants overlap. The reason for using
the middle soybean development stages in soybean trials was to avoid any errors in calculating the
predictions which could happen for two reasons. One mistake could occur if an analysis is done too
early is that, due to the uneven emergence of all individual plants in the plots, some plants are not
taken into account. A second mistake can be potential plant losses occurring as a consequence of
inter-row cultivation.

A study on maize has pointed out that the simple amount of green pixel extracted from the images
is not enough for digital counting of the number of plants [1]. This is reflected in the low value of
R2 = 0.023 calculated between the number of green pixels and the number of plants counted manually.
Only after conducting the additional image transformation did the results improve significantly
(R2 = 0.89). Excessive and often complicated image transformations were avoided during the soybean
research. This was achieved by using only the values of pixels to calculate simple VIs and importing
them into the MLM, which resulted in a precise prediction of the number of plants per unit area
(R2 = 0.80 in 2018 and R2 = 0.76 in 2019).

5. Conclusions

Plant density is one of the most important factors in successful agricultural production, not only
for soybeans but for all crops. It is of key importance in obtaining high yields. Therefore, information
about the number of plants per unit area is necessary. This information can be obtained by means of a
nondestructive method, using the MLMs and VIs derived from RGB images. A favorable time for the
extraction of VIs is the middle phase of plant development, because all plants that emerge earlier or
later are taken into account for the calculation. Although more research is needed, the predictions
calculated using RF in the soybean trials gave good results and showed that the method can be used as
new tool for gathering significant information about crops.
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