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In this study, the use of different multivariate approaches to classify 

rapeseed genotypes based on quantitative traits has been presented. Tree 
regression analysis, PCA analysis and two-way cluster analysis were applied in 
order todescribe and understand the extent of genetic variability in spring 
rapeseed genotype by trait data. 

The traits which highly influenced seed and oil yield in rapeseed were 
successfully identified by the tree regression analysis. Principal predictor for 
both response variables was number of pods per plant (NP). NP and 1000 seed 
weight could help in the selection of high yielding genotypes. High values for 
both traits and oil content could lead to high oil yielding genotypes. These 
traits may serve as indirect selection criteria and can lead to improvement of 
seed and oil yield in rapeseed. Quantitative traits that explained most of the 
variability in the studied germplasm were classified using principal component 
analysis. In this data set, five PCs were identified, out of which the first three 
PCs explained 63% of the total variance. It helped in facilitating the choice of 
variables based on which the genotypes’ clustering could be performed. The 
two-way cluster analysissimultaneously clustered genotypes and quantitative 
traits. The final number of clusters was determined using bootstrapping 
technique. This approach provided clear overview on the variability of the 
analyzed genotypes. The genotypes that have similar performance regarding 
the traits included in this study can be easily detected on the heatmap. 
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Genotypes grouped in the clusters 1 and 8 had high values for seed and oil 
yield, and relatively short vegetative growth duration period and those in 
cluster 9, combined moderate to low values for vegetative growth duration and 
moderate to high seed and oil yield. These genotypes should be further 
exploited and implemented in the rapeseed breeding program. The combined 
application of these multivariate methods can assist in deciding how, and based 
on which traits to select the genotypes, especially in early generations, at the 
beginning of a breeding program.  

Key words: multivariate techniques, principal component analysis, 
rapeseed tree regression analysis, two-way cluster analysis, 

, 
INTRODUCTION 

Oilseed rape (Brassica napus L.) is the most important oilseed crop in Europe (BUS et 

al., 2011) and the second most important oilseed crop in the world after soybean (BASUNANDA et 

al., 2010). Ensuring its efficient production has forced rapeseed breeders to create cultivars that 
combined high yield, high oil content and specific quality traits (low levels of erucic acid in oil 
and glucosinolates in seeds). This trend has narrowed the genetic basis of elite oilseed rape 
breeding material and, as a consequence, genetic variability in this crop is limited regarding 
many characters of value for breeders (COWLING, 2007; ANANGA et al., 2008). Rapeseed 
cultivars used in Europe are generally of very high quality; however some desirable traits are 
missing in European gene-pool (HU et al., 2003).  

The information on the genetic variation in B. napus could help breeders and geneticists 
to understand the structure of their germplasm and may help them to predict which combinations 
would produce the best offspring. There are various techniques available for evaluation of 
genetic variation, such as morphological, biochemical and molecular markers (MARJANOVIC-
JEROMELA et al., 2009). Morphological characterization continues to be the first step in the 
description and classification of germplasm. The application of appropriate statistical methods is 
a useful tool for the initial description and classification of genotypes, since it enables plant 
breeders to identify and select valuable genetic resources for direct use by farmers or for 
implementation in a breeding program to improve different agronomic traits. 

Seed yield is a complex trait that includes various components and finally results in a 
highly plastic yield structure (DIEPENBROCK, 2000). It is a result of physiological and 
morphological processes that occur during the phenological development. Yield components 
have significant role in the final yield performance of the plant, meaning that the indirect 
selection for traits that influence yield can be effective approach in a rapeseed breeding program 
(SADAT et al., 2010; MARJANOVIC-JEROMELA et al., 2011). One of the important factors for 
understanding yield constraints is the type of model used to analyze the data.  

Lately, the inaccuracy and unstable solutions derived from the application of linear 
regression models when dealing with data sets that have large number of insignificant predictor 
variables or in the cases when strong interactions between variables exist (HASTIE et al., 2001), 
leaded to development of various alternatives to linear models. The regression trees are non-
parametric statistical methods which are used to establish relationships between the predictors 
and the response variables by splitting the sample using the most influential predictor variable 
and assigning constant values to each resulting sub-domain in a recursive process (BREIMANN et 

al., 1984). The final separation of the data appears like a tree with two branches derived from 
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each node (RAWLS and PACHEPSKI, 2002).The most important features of regression trees are 
their ability to handle nonlinear relationships,wide range of data types, including numerical and 
categorical data. The obtained results are easy to interpret and the variable which significantly 
distinguishes the classes is clearly appointed (CRAWLEY, 2007). Additionally, problems caused 
by multicollinearity are not present as they are dealing with the predictors one by one. 
Regression trees first became popular in environmental sciences (LEES and RITMAN, 1991; 
BAKER, 1993), and were later used in studies on land quality assessment and soil properties 
estimation (MCKENZIE and RYAN, 1999). This model has increasingly been applied in agricultural 
sciences (LOBELL et al., 2005; FERRARO et al. 2009; TITTONELL et al., 2008) to identify the effect 
of different management practices on crop yield. However, the information on the use of 
regression trees in plant breeding programs is lacking. Using regression trees as a breeding tool 
may help detect the interrelations between variables, describing the variability of germplasm or 
identification of quantitative traits which influence seed yield.  

Statistical methods, such as principal components analysis (PCA), are useful tools for 
evaluation of germplasm (CANTINI et al. 1999; BADENES et al. 2000). This technique is an 
ordination method often used to simultaneously describe the relationships between sets of 
variables (here, genotypes and quantitative traits). It tends to reduce the dimension of 
multivariate data by removing inter-correlation among variables and allows a multi-dimensional 
relationship to be plotted on two or three principal axes (HAYMAN, 1967). As a result, PCA 
allows visualization of the differences among the individuals, identification of possible groups 
and finding relationships among individuals and variables (MARTINEZ-CALVO et al. 2008).  

Cluster analysis is used to describe and represent the structure of the pairwise 
dissimilarities amongst objects. Clustering methods order objects (genotypes) or variables 
(environments, traits) in groups that are similar with respect to some measure. Regular 
clustering, i.e. one-way clustering, aims at finding the best partitioning in one direction of a two-
way table or data matrix. However, some modern clustering problems (CIAMPI et al., 2005), pose 
a new challenge: not only to describe dissimilarities relationships among individuals and 
variables, but also to discover groups of variables and of individuals such that the variables are 
useful in describing the dissimilarities amongst the individuals and vice versa. To this end, 
techniques known as two-way clustering and crossed classification clustering have been 
developed. As opposed to regular one-way clustering, two-way or two-mode clustering aims to 
find the best partitioning of the data in two directions (both genotypes and environments/traits). 
The added benefit in comparison with one-way clustering is that it becomes immediately clear 
why certain objects have been clustered together, since their variables have also been clustered 
simultaneously (HAGEMAN et al., 2012). 

In order to increase the existing genetic variability and to develop rapeseed cultivars 
that will have high seed and oil yield potential, exploitation of the gene pool is of foremost 
importance. Many researchers have been evaluating the diversity in different collections of 
rapeseed genotypes using multivariate techniques (CHOUDHARY and JOSHI, 2001; ALEMAYEHU 
and BECKER, 2002; HU et al., 2007; MARJANOVIC-JEROMELA et al., 2009; ASGHARI et al., 2011). 
However, very little information is available on the spring rapeseed genotypes created in the 
South Eastern Europe. Moreover, tree regression analysis and two-way cluster analysis have not 
been used for characterization of rapeseed germplasm or for identification of superior hybrids. 
Toward these ends, three multivariate methods were applied todescribe and understand the extent 
of genetic variation in spring oilseed rape genotypes based on several quantitative traits. The 
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objectives were a) to assess the extend and patterns of variability within the created material in a 
plant breeding programme, b) to examine different approaches for classification of rapeseed 
genotypes based on quantitative traits, c) to identify quantitative traits which explain most of the 
variability of the genotypes, and d) to establish an effective method that could facilitate the 
selection of superior genotypes for utilization in field production or as parents in future 
hybridization program. 
 

 
MATERIALS AND METHODS 

Plant material and experimental design 

In this study, 55 spring rapeseed genotypes were included. Out of them, 10 were 
registered varieties and advanced breeding lines of different origin, and the other 45 were hybrid 
combinations obtained as a result of diallel crossing (without reciprocals) of the previous 10 
genotypes (Table 1). 
 
Table 1. Spring rapeseed genotypes included in the study 

1 Lisora (Germany) 16 Lisora х Ratnik-3 31 Mira х Lisonne 46 Lisora х Jovana 

2 Lisora х Jr-ns-6 17 Jr-ns-6 х Ratnik-3 32 Jr-ns-36 х Lisonne 47 Jr-ns-6 х Jovana 
3 Jr-ns-6 (Serbia) 18 Mira х Ratnik-3 33 Global х Lisonne 48 Mira х Jovana 
4 Lisora х Mira 19 Jr-ns-36 х Ratnik-3 34 Ratnik-3 х Lisonne 49 Jr-ns-36 х Jovana 
5 Jr-ns-6 х Mira 20 Global х Ratnik-3 35 Jr-ns-44 х Lisonne 50 Global х Jovana 
6 Mira (Serbia) 21 Ratnik-3 (Serbia) 36 Lisonne (Germany) 51 Ratnik-3 х Jovana 
7 Lisora х Jr-ns-36 22 Lisora х Jr-ns-44 37 Lisora х Liaison 52 Jr-ns-44 х Jovana 
8 Jr-ns-6 х Jr-ns-36 23 Jr-ns-6 х Jr-ns-44 38 Jr-ns-6 х Liaison 53 Lisonne х Jovana 
9 Mira х Jr-ns-36 24 Mira х Jr-ns-44 39 Mira х Liaison 54 Liaison х Jovana 

10 Jr-ns-36 (Serbia) 25 Jr-ns-36 х Jr-ns-44 40 Jr-ns-36 х Liaison 55 Jovana (Serbia) 

11 Lisora х Global 26 Global х Jr-ns-44 41 Global х Liaison 
12 Jr-ns-6 х Global 27 Ratnik-3 х Jr-ns-44 42 Ratnik-3 х Liaison 
13 Mira х Global 28 Jr-ns-44 (Serbia) 43 Jr-ns-44 х Liaison 
14 Jr-ns-36 х Global 29 Lisora х Lisonne 44 Lisonne х Liaison 
15 Global (Sweden) 30 Jr-ns-6 х Lisonne 45 Liaison (Germany) 

 
 
The genotypes were grown in 2010, at experimental field near Skopje, Macedonia. The 

experimental design was RCBD, with five replications, out of which two replications were 
irrigated and the other three were non-irrigated. Each plot consisted of 3 rows, 2 m long, with 25 
cm distance between rows and 5 cm in the row. Standard crop management practices were 
applied during the growth season. The data were collected on 10 randomly selected plants from 
the middle row of each plot. The following traits have been analyzed: plant height (PH), number 
of primary branches per plant (NB), number of pods per plant (NP), pod length (PL), number of 
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seeds per pod (NSP), seed weight per pod (WSP), 1000 seed weight (W1000), seed weight per 
plant (WSPL) and oil content (O). Oil yield per plant (OY) was estimated on the basis of seed 
weight per plant and oil content. Days to flowering (DF), flowering duration (FD), ripening 
duration (RD) and vegetative growth duration (VG) have been determined on a plot basis. 
 
Statistical analyses 

In order to identify the extend of variability of the genotypes included in the study, the 
effect that the various analyzed traits have on the expressed variability and to classify the 
genotypes based on their variability, the following statistical analyses were performed: tree 
regression analysis, principal component analysis and two-way cluster analysis. The mean values 
of the genotypes for the analyzed quantitative traits have been submitted to different packages in 
the R 3.0.3 statistical software.  

The basicalgorithm underlying regression trees (BREIMAN et al., 1984) is to 
continuallydivide the data set intohomogeneous groups, assessing the relative‘‘impurity’’ of the 
data before and after a split, in order to establish themost parsimonious tree. The response 
variable (i.e. yield) is modeled as a piece-wise constant function. Regression trees work by 
splitting the data first into two subsets based on the predictor variable and its value, whichresults 
in the greatest increase of the explained variance of the response variable. Each split, called a 
daughter node, is then treated independently, as its own dataset and the process is repeated 
recursively. The output can be displayed as a tree-like Figure, with criteria for each split (i.e. 
node) labeled according the threshold used to define the split. The regression trees were 
implemented in the ‘‘rpart’’package (THERNEAU et al., 2014) and were usedfor identification of 
quantitative traits which influence WSPL in one case and the OY in the second case.  

Principal component analysis was performed using the command “principal” from the 
“psych” package. This application by default standardizes the data matrix and as a result the 
component scores are standard scores (mean=0, sd = 1) of the standardized input (REVELLE, 
2014). Principal components have been extracted until the eigen value > 1. 

Quantitative traits that have been identified to have high correlation with the first three 
principal components were used for two-way clustering. Their standardized values (mean=0, sd 
= 1) were utilized for estimating the Euclidian distance between the genotypes. The obtained 
values were normalized according to ROLDAN-RUIZ et al. (2001) and clustered with the UPGMA 
method for creation of a dendrogram. The estimation of optimal number of clusters was 
performed by multiscale bootstrap resampling for assessing the uncertainty in hierarchical cluster 
analysis, originallysuggested for DNA microarray data analysis (SUZUKI and SHIMODAIRA, 
2013). For each cluster in hierarchical clustering, the p-values are calculated (a value between 0 
and 1), which indicates how strong the cluster is supported by data. Identified clusters with 
approximately unbiased (AU) p-values larger than 95% after 100 bootstraping replications were 
considered to be strongly supported by data. The resulting dendrogram was used in the heatmap, 
as a row dendrogram. The column dendrogram was organized according to the predetermined 
row dendrogram. “Heatmap.2” command from the “heatmap.plus” package (DAY, 2012) was 
applied for generating the two-way cluster.  
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RESULTS AND DISCUSSION 
Tree regression analysis 

Regression trees, which provide a simple means of capturing nonlinear relationships 
and variable interactions, appear to be a valuable tool for identifying significant yield constraints. 
The results of the regression tree model indicated that number of pods per plant was the most 
important variable determining WSPL (Figure 1) and OY (Figure 2). The number of genotypes 
and their average seed and oil yield is shown for each terminal node on both Figures. The 
observations that satisfy the criterion at a given split fall to the left-hand daughter node while 
those not meeting the criterion continue to the right node. As a result, the genotypes of interest 
(having high seed and oil yield) are arranged on the right side of the tree. 17 genotypes that have 
NP<51.45 were positioned on the left side of the tree in both cases. No further splitting on the 
left side indicates that number of pods per plant is the main constraint for both high seed and oil 
yield.  

The remaining 38 genotypes were again split based on the NP in the case of WSPL. Out 
of them, 23 genotypes were separated in two nodes: eight genotypes that have W1000 less than 
2.36, for which WSPL was 2.466 g and fifteen genotypes with more than 2.36 g W1000, with 
average WSPL of 3.085 g. The remaining 15 genotypes were positioned on the right side of the 
tree. They had more than 69.83 pods per plant and average seed yield per plant of 3.639 g 
(Figure 1).  

When analyzing quantitative traits that influence the variability of oil yield per plant, 
similar pattern can be observed. Namely, after NP, the next differentiation criterion for the 
genotypes is oil content in the seed. Twelve genotypes that have less than 39.17% oil in the seed 
and average oil yield per plant of 1.075 g are positioned on the left side of the tree. The W1000 
was of tertiary importance, dividing 26 genotypes on two terminal nodes. There are 18 genotypes 
that had less than 3.045g W1000 and average oil yield of 1.288 g on the left side. Only eight 
genotypes had more than 3.045 g W1000 and average oil yield of 1.654 g (Figure 2). In both 
cases, genotypes classified in the furthest right node should be considered for implementation in 
a breeding program for improving seed or oil yield in rapeseed. Furthermore, for the analyzed 
genotypes, NP and W1000 were the main constraints for seed yield and NP, O and W1000 for oil 
yield. 

The tree regression analysis of this particular dataset provided insight into the structure 
of relationship between rapeseed seed and oil yield and analyzed quantitative traits. As a result, 
multiple traits which should be targeted at the first stages of the selection process were defined. 
This approach could be used to apply different breeding strategies. The indirect selection for a 
combination of high values for these traits may be highly effective at the first years of progeny 
testing in rapeseed, as it could lead to improvement of seed and oil yield in rapeseed. 

Although regression tree technique allowed identification of yield determining traits, it 
has some limitations considering issues that might be of interest at the beginning of a breeding 
program.Alternative classification techniques should be explored and used in combination with 
the regression tree to partition the genotypes into groups with similar traits.   
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Figure 1. Tree regression analysis for weight of seed pe plant  
 
 
 
 

 
 
 
 Figure 2.  Tree regression analysis for oil yield per plant 
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Principal component analysis 

The principal component analysis identified five PCs with eigen values > 1, which 
explained 80% of the total genotypes variation (Table 2). BELETE (2011) reported 91.4% 
variation contributed by first five principal components in Ethiopian mustard, while AFRIN et al. 
(2012) identified that the first three PCs accounted for 68.93% of the variation among the 
rapeseed genotypes used in their study. 
 
Table 2. PCs scores for the analyzed quantitative traits 

Quantitative traits Factor loadings 
PC1 PC2 PC3 PC4 PC5 

PH      0.20 0.58 0.40 -0.42 -0.10 
NB      0.79 0.03 -0.04 -0.39 0.06 
NP      0.84 0.10 0.21 -0.27 -0.02 
PL     -0.17 0.27 0.77 0.30 0.26 
NSP     0.45 0.13 0.49 0.49 0.35 
WSP     0.69 -0.02 -0.31 0.47 0.26 
W1000   0.71 0.11 -0.50 0.24 0.07 
WSPL    0.90 0.34 -0.07 -0.03 -0.03 
O       0.05 0.09 0.21 0.39 -0.80 
OY      0.88 0.35 -0.02 0.05 -0.19 
DF     -0.54 0.45 -0.31 0.14 0.20 
FD      0.08 -0.17 0.10 -0.47 0.24 
RD     -0.34 0.86 -0.14 -0.03 -0.04 
VG     -0.46 0.83 -0.22 -0.05 0.09 
SS loadings            4.81 2.34 1.60 1.40 1.07 
Proportion of Variance         0.34 0.17 0.11 0.10 0.08 
Cumulative Variance          0.34 0.51 0.63 0.73 0.80 

 
 

The first PC explained 34% of the total variability. WSPL and OY, which are the main 
goals in the breeding program, showed the highest correlation with the first PC, followed by NP, 
NB, W1000 and WSP. The second PC was mostly associated with PH, DF, RD and VG and 
explained 17% of the total variance. PL and NSP were correlated with the third PC, which 
accounted for the 11% of the total variance. Oil content had the highest positive correlation with 
the fourth PC, while FD was positively associated with the PC5. These two PCs explained 10% 
and 8% of the variance, accordingly. Similar results have been observed by AFRIN et al. (2012), 
DAR et al. (2010) and ISLAM and ISLAM (2000). CHOUDHARY and JOSHI (2001) concluded that 
plant height, secondary branches per plant, days to flowering and 1000-seed weight contributed 
maximum towards genetic divergence. The factor loadings for the first two PCs were plotted on 
Figure 3. The orientation of the genotypes according to the values of different analyzed traits can 
be detected on the Figure 3, but the difference between genotypes and the traits based on which 
the classification is performed cannot be clearly recognized. Even so, the PC analysis identified 
traits which contributed most to the variation of the analyzed genotypes and can serve as a useful 
tool for facilitating the selection of desirable characteristics in rapeseed breeding. 
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Figure 3. PC1 and PC2 factor loadings for genotypes and quantitative traits 

 
Two-way cluster analysis 

Most of the variability of the analyzed genotypes has been explained by the first three 
PCs. The traits that had highest correlation with them were used for the two-way cluster analysis. 
The multiscale bootstrap resampling identified that the optimal number of clusters for the 
analyzed data is nine clusters for the genotypes. The clusters determined by the bootstraping 
technique are presented in Figure 4. Many other researchers were performing cluster analysis 
based on quantitative traits in rapeseed (ALI et al., 1995; DHILLON et al., 1999; HU et al., 2007; 
MARJANOVIC-JEROMELA et al., 2009) and obtained different clustering based on the material used 
in their studies, analyzed traits and the environmental conditions in which the observations were 
performed. The one-way clustering gives an overview on the classification of genotypes in 
different groups, but the quantitative traits used as a basis for the performed clustering can not be 
seen. Therefore, additional explanation is needed. 
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Figure 4.Dendrogram representing clustering of the analyzed rapeseed genotypes 
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Figure 5. Two-way cluster explaining the effect of analyzed traits on genotypes classification 

As a supplement, the heatmap presenting two-way classification of the traits and 
genotypes is given in Figure 5. The characters used for clustering were divided in three main 
groups. The first group comprised the same traits that were associated with the PC1. PH, PL and 
NSP were grouped in the second cluster, while the traits associated with the vegetative 
development (DF, DR, VG) belonged to the third group. Such classification of the traits allows 
an effective overview and enables an easy determination of the characteristics based on which 
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the breeding material has been grouped. As explained by HAGEMAN et al. (2012), the two-mode 
clustering is able to extract relevant features from the data set. In our study, this clustering 
technique identified genotypes that share a common set of characteristics. The first cluster 
comprised genotypes 40, 47, 37, 18, 9, 38, 8 and 34, which are characterized by high values for 
seed and oil yield, and relatively short duration of phenological development. The genotypes in 
cluster 3 had similar phenological characteristics as those from cluster 1, but they had lower 
average values for all other analyzed traits. Clusters 3, 4, 5 and 6 comprised genotypes that had 
low to moderate values for the traits from the first group (WSPL, OY, NP, NB, W1000 and 
WSP) and high values for the traits from the third group. The genotypes classified in cluster 9 (6, 
30, 31, 10, 14, 5, 7, 24, 17, 19, 21 and 29) and cluster 2 (4, 16) are characterized by low values 
for the duration of vegetative growth stages and high seed and oil yield. The highest average 
values for weight of seed per plant and oil yield were detected in clusters 1 and 8. The genotypes 
that belong to these two groups can be considered for future use in the breeding program. 
Genotypes that do not belong to any of the groups can be used for improvement of certain traits, 
for which they differ from the genotypes included in the determined clusters. Furthermore, the 
clusters 1, 2, 4 and 8 did not comprise the parents used for diallel crossing, indicating that as a 
result of the hybridization more divergent progeny has been obtained. The extend of variation in 
the breeding material was clearly illustrated and the genotypes were effectively classified on the 
heatmap. This technique could be used as an efficient tool for selecting genotypes based on 
desired traits in the early stages of the breeding process. Moreover, two-way cluster analysis may 
explain the diversity patterns in different germplasm collections.  
 

CONCLUSION 
The applied multivariate statistical models were effective for analysis of the variability 

in rapeseed genotypes, and for their classification in homogenous groups based on several 
quantitative traits. 

Tree regression analysis successfully identified the traits which mostly influenced the 
seed and oil yield. Number of pods per plant was the principal predictor for both response 
variables. High seed yielding genotypes could be selected based on this trait and weight of 1000 
seeds. The selection of genotypes based on high values for NP, oil content and W1000 may lead 
to improvement of oil yield in the studied breeding material. This approach can be applied for 
identification of indirect selection criteria for seed and oil yield in a rapeseed breeding program 
or for recognition of the characters that have the highest effect on the variability of a certain 
response variable. 

The principal component analysis was effective for classificationof the quantitative 
traits that explained most of the variability of the studied genotypes. In this data set, the 
characters were appointed to five PCs, out of which the first three PCs explained 63% of the total 
variance. It served as a useful tool for detection of traits for which the genotypes expressed the 
highest differences and facilitated the choice of variables based on which the clustering of the 
germplasm could be performed. 

The two-way cluster analysis, compared to one-way clustering, had the advantage of 
simultaneously clustering the genotypes and thequantitative traits in a dataset. The genotypes 
that have similar performance can be easily detected on the heatmap. This model gives a clear 
overview on the variability of the existing germplasm and can assist in deciding how, and based 
on which traits to select the genotypes, especially in early generations, at the beginning of a 
breeding program. The genotypes grouped in the cluster 1 and 8, whichhad high values for seed 

4
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and oil yield, and relatively short vegetative growth duration period and in the cluster 9, 
combining moderate to low values for the duration of vegetative growth and moderate to high 
seed and oil yield, could be considered for future implementation in a rapeseed breeding 
program.   

The application of these three methods was useful for classification and characterization 
of rapeseed genotypes. For characterization of different germplasm collections, or a starting 
material in a breeding program, it should be further exploited.  
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U ovom istraživanju je prikazana upotreba različitih multivarijacionih metoda za 
klasifikovanje germplazme uljane repice na osnovu kvantitativnih svojstava. Sa ciljem da se 
opiše i razume stepen genetske varijabilnosti genotipova za i na osnovu ispitivanih kvantitativnih 
svojstava kod jare uljane repice, primenjene su: regresiona analizadrveta, PCA analiza i 
dvostrana klaster analiza.  

Regresiona analiza drveta je uspešno identifikovala svojstva koja su jako uticala na 
prinos semena i ulja kod uljane repice. Glavni indikator za obe zavisne promenjive je bilo 
svojstvo broj ljuski po biljci. Ovo svojstvo, zajedno sa apsolutnom masom, može olakšati odabir 
visokoprinosnih genotipova. Visoke vrednosti za ova dva svojstva, kao i za sadržaj ulja, ukazuju 
na genotipove koje daju visok prinos ulja. Ova svojstva mogu poslužiti kao indirektni kriterijumi 
za selekciju i doprineti poboljšanju prinosa semena i ulja kod uljane repice.  
Kvantitativna svojstva koja su objasnila najveći deo varijabilnost kod ispitivane germplazme su 
klasifikovana pomoću analize glavnih komponenata. Za ispitivane podatke, identifikovano je 5 
glavnih komponenata, od kojih su prve tri objasnile 63% ukupne varijanse. Na ovaj način je 
olakšan izbor svojstava na osnovu kojih se gentopovi mogu efikasno klasifikovati.  

Dvostrana klaster-analiza istovremeno klasifikuje i genotipove i kvantitativna svojstva. 
Konačan broj klastera određen je butstrap tehnikom. Ovakav pristup omogućuje jasan pregled 
varijabilnosti analiziranih genotipova. Genotipovi koji imaju sličnu performansu na 
osnovusvojstava koja su uključena u analizu mogu biti lako detektovani na hitmapi. Genotipovi 
svrstani u klastere 1 i 8 su se odlikovali visokim vrednostima za prinos semena i ulja, kao i 
relativno kratkom vegetacijom, dok su oni klasifikovani u klasteru 9 imali kombinaciju srednjih i 
niskih vrednosti za dužinu vegetacije i srednjih i visokih vrednosti za prinos semena i ulja. Zato 
bi ove genotipove trebalo dodatno ispitati i uključiti u selekcioni program na uljanoj repici.  

Kombinovana primena navedenih multivarijacionih metoda može pomoći u odlučivanju 
kako i na osnovu kojih svojstava odabirati genotipove, posebno u ranim generacijama, u 
početnim fazama selekcije.  

                                                               Primljeno 24. IV. 2014.  

                                                                                                                                                          Odobreno 22. VII. 2014 


