FiVeR - Repository of the Institute of Field and Vegetable Crops
Institute of Field and Vegetable Crops
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   FiVeR
  • FiVeR
  • Radovi istraživača / Researchers' papers
  • View Item
  •   FiVeR
  • FiVeR
  • Radovi istraživača / Researchers' papers
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Cycloxydim-tolerant maize – breeders standpoint

No Thumbnail
Authors
Bekavac, Goran
Malidža, Goran
Purar, Božana
Article (Published version)
Metadata
Show full item record
Abstract
Cycloxydim-Tolerant Maize (CTM) was developed by researches at the University of Minnesota. CTM plants were regenerated from tissue culture selected for callus growth in the presence of cycloxydim, and the resulting plants were shown to contain a nuclear mutation, expressed as a single, partially dominant gene (known as Acc1) that conferred tolerance to the herbicide. Cycloxydim is a systemic herbicide for post emergence application in dicot crops to selectively control grass weeds. Corn, like most grasses is susceptible to cycloxydim due to inhibited acetyl-coenzyimeA carboxylaze enzyme activity. There are two key benefits of this technology: first, cycloxydim applications in CTM hybrids can be delayed until the weed spectrum and population density exceed agro-economic threshold; second, cycloxydim can be applied at either stage of plant development with no effect on basic agronomic traits, compared to non treated plants. Nevertheless, this type of tolerance requires 2 genes to be ful...ly effective, i.e. gene must be present in both inbred parents to provide complete tolerance in the resulting hybrid. Such type of tolerance doubles the chances for yield drag and doubles the number of inbred conversions needed. This also limits germplasm integration and increases time lag in developing hybrids. Despite these difficulties, many seed companies introduce tolerance to cycloxydim into their commercial inbreds, and many of them have already commercialized CTM hybrids. Finally, it came as a logical question what is more important – hybrid performance or new trait? Critical to the success of this technology has been yield performance of CTM hybrids. At the same time, performance and herbicide tolerance do not exclude each other and can surely co-exist. To be accepted, this coexistence must secure high profitability to corn producers. However, CTM hybrids will not replace conventional ones on a large scale, but could be used as a specific tool, or could enhance the use of alternative weed control options in corn production.

Source:
Poljoprivreda, 2008, 14, 1sup
Publisher:
  • Faculty of Agrobitechnical Sciences Osijek

ISSN: 1330-7142

[ Google Scholar ]
URI
http://fiver.ifvcns.rs/handle/123456789/656
Collections
  • Radovi istraživača / Researchers' papers
Institution/Community
FiVeR
TY  - JOUR
AU  - Bekavac, Goran
AU  - Malidža, Goran
AU  - Purar, Božana
PY  - 2008
UR  - http://fiver.ifvcns.rs/handle/123456789/656
AB  - Cycloxydim-Tolerant Maize (CTM) was developed by researches at the University of Minnesota. CTM plants were regenerated from tissue culture selected for callus growth in the presence of cycloxydim, and the resulting plants were shown to contain a nuclear mutation, expressed as a single, partially dominant gene (known as Acc1) that conferred tolerance to the herbicide. Cycloxydim is a systemic herbicide for post emergence application in dicot crops to selectively control grass weeds. Corn, like most grasses is susceptible to cycloxydim due to inhibited acetyl-coenzyimeA carboxylaze enzyme activity. There are two key benefits of this technology: first, cycloxydim applications in CTM hybrids can be delayed until the weed spectrum and population density exceed agro-economic threshold; second, cycloxydim can be applied at either stage of plant development with no effect on basic agronomic traits, compared to non treated plants. Nevertheless, this type of tolerance requires 2 genes to be fully effective, i.e. gene must be present in both inbred parents to provide complete tolerance in the resulting hybrid. Such type of tolerance doubles the chances for yield drag and doubles the number of inbred conversions needed. This also limits germplasm integration and increases time lag in developing hybrids. Despite these difficulties, many seed companies introduce tolerance to cycloxydim into their commercial inbreds, and many of them have already commercialized CTM hybrids. Finally, it came as a logical question what is more important – hybrid performance or new trait? Critical to the success of this technology has been yield performance of CTM hybrids. At the same time, performance and herbicide tolerance do not exclude each other and can surely co-exist. To be accepted, this coexistence must secure high profitability to corn producers. However, CTM hybrids will not replace conventional ones on a large scale, but could be used as a specific tool, or could enhance the use of alternative weed control options in corn production.
PB  - Faculty of Agrobitechnical Sciences Osijek
T2  - Poljoprivreda
T1  - Cycloxydim-tolerant maize – breeders standpoint
IS  - 1sup
VL  - 14
UR  - DOAJ-266
ER  - 
@article{
author = "Bekavac, Goran and Malidža, Goran and Purar, Božana",
year = "2008",
abstract = "Cycloxydim-Tolerant Maize (CTM) was developed by researches at the University of Minnesota. CTM plants were regenerated from tissue culture selected for callus growth in the presence of cycloxydim, and the resulting plants were shown to contain a nuclear mutation, expressed as a single, partially dominant gene (known as Acc1) that conferred tolerance to the herbicide. Cycloxydim is a systemic herbicide for post emergence application in dicot crops to selectively control grass weeds. Corn, like most grasses is susceptible to cycloxydim due to inhibited acetyl-coenzyimeA carboxylaze enzyme activity. There are two key benefits of this technology: first, cycloxydim applications in CTM hybrids can be delayed until the weed spectrum and population density exceed agro-economic threshold; second, cycloxydim can be applied at either stage of plant development with no effect on basic agronomic traits, compared to non treated plants. Nevertheless, this type of tolerance requires 2 genes to be fully effective, i.e. gene must be present in both inbred parents to provide complete tolerance in the resulting hybrid. Such type of tolerance doubles the chances for yield drag and doubles the number of inbred conversions needed. This also limits germplasm integration and increases time lag in developing hybrids. Despite these difficulties, many seed companies introduce tolerance to cycloxydim into their commercial inbreds, and many of them have already commercialized CTM hybrids. Finally, it came as a logical question what is more important – hybrid performance or new trait? Critical to the success of this technology has been yield performance of CTM hybrids. At the same time, performance and herbicide tolerance do not exclude each other and can surely co-exist. To be accepted, this coexistence must secure high profitability to corn producers. However, CTM hybrids will not replace conventional ones on a large scale, but could be used as a specific tool, or could enhance the use of alternative weed control options in corn production.",
publisher = "Faculty of Agrobitechnical Sciences Osijek",
journal = "Poljoprivreda",
title = "Cycloxydim-tolerant maize – breeders standpoint",
number = "1sup",
volume = "14",
url = "DOAJ-266"
}
Bekavac, G., Malidža, G.,& Purar, B.. (2008). Cycloxydim-tolerant maize – breeders standpoint. in Poljoprivreda
Faculty of Agrobitechnical Sciences Osijek., 14(1sup).
DOAJ-266
Bekavac G, Malidža G, Purar B. Cycloxydim-tolerant maize – breeders standpoint. in Poljoprivreda. 2008;14(1sup).
DOAJ-266 .
Bekavac, Goran, Malidža, Goran, Purar, Božana, "Cycloxydim-tolerant maize – breeders standpoint" in Poljoprivreda, 14, no. 1sup (2008),
DOAJ-266 .

DSpace software copyright © 2002-2015  DuraSpace
About FiVeR | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceInstitutions/communitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About FiVeR | Send Feedback

OpenAIRERCUB