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The year 2008 marks the 80th anniversary of mutation induction in plants. The application of mutation techniques, i.e. Gamma-rays and other 
physical and chemical mutagens, has generated a vast amount of genetic variability and has played a significant role in plant breeding and genetic 
studies. The widespread use of induced mutants in plant breeding programmes throughout the world has led to the official release of more than 2,700 
plant mutant varieties. A large number of these varieties (including cereals, pulses, oil, root and tuber crops, and ornamentals) have been released in 
developing countries, resulting in enormous positive economic impacts. 

During the last decade, with the unfolding of new biological fields such as genomics and functional genomics, bioinformatics, and the develop-
ment of new technologies based on these sciences, there has been an increased interest in induced mutations within the scientific community. 
Induced mutations are now widely used for developing improved crop varieties and for the discovery of genes, controlling important traits and 
understanding the functions and mechanisms of actions of these genes. Progress is also being made in deciphering the biological nature of DNA 
damage, repair and mutagenesis. To this end, the International Symposium on Induced Mutations in Plants was organized by the International 
Atomic Energy Agency (IAEA) and the Food and Agriculture Organization (FAO) of the United Nations through the Joint FAO/IAEA Division of 
Nuclear Techniques in Food and Agriculture.

The Symposium comprised an open session, two plenary sessions and ten concurrent sessions, covering topics from induced mutations in food 
and agriculture, plant mutagenesis, genetic diversity, biofortification, abiotic stress tolerance and adaptation to climate changes, crop quality and 
nutrition, seed and vegetatively propagated plants, gene discovery and functional genomics. A workshop on low phytate rice breeding was also 
organized. About 500 participants from 82 Member States of the IAEA and FAO, and nine international organizations/institutions attended the 
Symposium, with a good balance between the private and public sector, as well as developing and developed Member States. The Symposium 
received valuable assistance from the cooperating organizations and generous support from the private sector, for which the sponsoring organiza-
tions are most grateful.

This publication is a compilation of peer-reviewed full papers contributed by participants. They were either oral or poster presentations given in 
different sessions except Concurrent Session 3 (which will be compiled by the Human Health Division in a separate publication). These papers not 
only provide valuable information on the recent development in various fields related to induced mutations, but also on the social and economic 
impact of mutant varieties worldwide. Therefore, these Proceedings should be an excellent reference book for researchers, students and policy 
makers for understanding applications of induced mutations in crop improvement and biological research.

Qu Liang
Director
Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture
IAEA
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Abstract
For much of the past century, mutagenesis has gained popularity in 
plant genetics research as a means of inducing novel genetic variation. 
Induced mutations have been applied for the past 40 years to produce 
mutant cultivars in sunflower by changing plant characteristics that 
significantly increase plant yield and quality. The present study was 
focused on generating baseline data to elucidate the role of genotypic 
differences in the response of sunflower to induced mutagenesis with the 
aim of expanding the applicability of the use of induced mutant stocks 
in the genetic improvement of the crop and in its functional genomics. 
The strategy adopted was to estimate the optimal treatment conditions 
(doses of mutagens) through relating the extent of damage in seedling 
progeny to the exposure levels of the initiating propagules to mutagens. 
Seeds of 15 elite sunflower genotypes commonly used as breeding stocks 
and grown on commercial scales were treated with a range of mutagens: 
Gamma-rays (γ rays); fast neutrons and with ethyle-methane-sulphonate 
(EMS) at different treatment doses. The three mutagenic agents affected 
seedling height, reducing it with increasing dosage. Based on the muta-
gen damage on seedling height, the 50% and 30% damage indices (D50 
and D30, respectively) were estimated for the 15 sunflower genotypes for 
the three mutagens. The D50 (D30) values for the sunflower lines ranged 
from 120 to 325Gy (5 to 207Gy) for gamma irradiation; 9 to 21Gy (0.1 to 
10Gy) for fast neutrons and 0.69 to 1.55% (0.01 to 0.68%) concentration 
of EMS.

Introduction
Sunflower (Helianthus annuus L.) is one of the world’s most important 
oil crops, used for human consumption and industrial processes. It is 
also used as a confectionery, ornamental plant and flower, and as bird 
feed. It is currently cultivated on over 21 million hectares world-wide 
annually. The largest sunflower producers in the world are Russia, the 
United States, Argentina, China, and France [1].

The main objective of sunflower breeding is to develop productive 
sunflower hybrid cultivars that are stable, high yielding, and resistant 
to biotic and abiotic stresses. Yield is a complex trait, is controlled by 
multiple gene effects. Seed yield is variously estimated as: number of 
plants per hectare (55,000-60,000), number of seeds per plant (>1,500), 
hectoliter mass of the seed (45-50 kg/ha), thousand seed mass (>80 g), 
low hull percentage (20-24%) and high seed oil content (>50) [2].

Induced mutations have been applied for the past 40 years to produce 
mutant cultivars in sunflower by changing plant characteristics for sig-
nificant increase in plant productivity [3], [7]. Mutagenic treatments, 
usually on seed, have induced high-oleics, semi-dwarfs and dwarfs, 
male-sterile plants and other interesting variants such as earliness and 
seeds with thin hull [4], [5], [6]. 

In 1976, Soldatov produced a mutant of significant practical impor-
tance for sunflower breeding by treating the seed of the cultivar VNIIMK 
8931 with a solution of 0.5% dimethyl-sulphate (DMS); M3 lines pos-
sessing a high content of oleic acid in oil were obtained. After further 
breeding, the high-oleic cultivar Pervenetz was developed [4]. The high 
oleic content of this cultivar has proved to be very stable under varying 
temperatures and the trait can be easily transferred into other genotypes 
by normal breeding procedures. 

The main objectives of this research were to increase genetic variation 
in sunflower inbred lines and to assess the efficiency of different muta-
genic treatments, since basic information on this is lacking. The first step 
was to estimate optimal treatment conditions (doses). Germination of 
the M1 seed provides a good test of the sensitivity of the material to the 
mutagenic treatment. 

Materials and Methods
Fifteen genetically different sunflower inbred lines chosen for their 
importance in commercial hybrid production (Table 1) were used for 
this study. Seed of these genotypes varied morphologically. The Institute 
of Field Vegetable Crops, Novi Sad, Serbia, supplied the seeds.

For gamma irradiation, 50 seeds of each genotype were irradiated at 
100, 200, 300, 400 and 500Gy using a Cobalt-60 gamma source at the 
IAEA Laboratories in Seibersdorf, Austria. Prior to mutagenic treatment, 
the seeds were kept in a desiccator over a 60 % glycerol/water mixture for 
seven days at room temperature for seed moisture equilibration. 

For fast neutron treatment, 50 seeds were treated with five different 
doses: 10, 20, 30, 40 and 50Gy at the Atomic Energy Research Institute, 
Budapest, Hungary. The samples were bombarded inside a cadmium 
(Cd) capsule with wall thickness of 2mm. Exposure temperature was 
less than 30°C, at normal air pressure and humidity was less than 70%. 
The samples were rotated at 16 revolutions per minute. Ten days after 
the treatment, 25 seeds of each genotype were sown and germinated to 
assess radiosensitivity. 

For chemical treatment, seeds were pre-soaked in distilled water for 
24 hours. Twenty-five seeds of each genotype were treated with five 
concentrations of ethyle-methane-sulphonate (EMS) solution, 0.5, 1.0, 
1.5, 2.0 and 2.5%, for 3.5 hours; treatment concentrations were based on 
studies of other species [8]. After EMS treatment, the seeds were washed 
and sown. The control, non-mutagenized seeds were treated similarly, 
except for exposure to the mutagen.

The treated seeds and the controls were sown in boxes in three replica-
tions using the flat method [9] in a glasshouse under controlled envi-
ronmental conditions (22-35°C, lighting of 12-hour photoperiod). The 
parameter used to assess the dose response was the seedling height. The 
measurements were taken when cotyledons emerged above the soil and 
had split up (12 days after sowing).

The mean seedling height of the control was used as an index of the 
normal growth of each inbred line. The mean seedling height of each 
treatment was expressed as a percentage of the corresponding control 
value. Based on these values, regression equations were obtained. 

Intervarietal Differences in Response of Sunflower (Heli-
anthus annuus L.) to Different Mutagenic Treatments

S Gvozdenovic1,*, S Bado2, R Afza2, S Jocic1 & C Mba2

1 Institute of Field and Vegetable Crops (IFVC), Oil Crops Department, Novi Sad, Serbia
2 Plant Breeding Unit Joint FAO/IAEA Agriculture and Biotechnology Laboratory, International 
Atomic Energy Agency Laboratories, Seibersdorf, Austria

* Corresponding author. E-mail: sandra@ifvcns.ns.ac.yu



359

Radiobiological effects of mutagenesis were observed in the M1, and 
calculated on the basis of the absorbed dose or EMS of the seedling 
height. According to [10] and [11] seedling height reduction of 30-50% 
is generally assumed to give high mutation yield. Seedling height is 
highly correlated to survival [12]. This is usually designated as D30 and 
D50, respectively. 

Table 1. List and characteristics of treated sunflower inbred lines

Inbred lines Type of 
inbred 
line

Branching Days 
to 
flow-
ering

Plant 
height 
(cm)

Oil 
con-
tent 
(%)

Seed 
size 
ratio

Thou-
sand 
seed 
mass 
(g)

Seed 
color

Seed 
coat 
type

HA-26 Standard 
female(B 
analogue)

no 62 126 44 0.39 46.15 black thick

VL-A-8 Standard 
female(B 
analogue)

no 65 108 47 0.5 38.42 black thick

HA-48 Standard 
female(B 
analogue)

no 72 150 48 0.49 44.30 black thick

HA-19 Standard 
female(B 
analogue)

no 56 80 47 0.53 50.70 black thick

OD-3369 Standard 
female(B 
analogue)

no 71 105 55 0.42 52.16 black thick

V-8931-
3-4-OL

High 
oleic

yes 73 95 54 0.47 47.47 black thin

HA-26-OL High 
oleic

no 65 119 47 0.40 51.96 black thick

VK-66-tph1 Altered 
tocophe-
rol quality

yes 57 75 41 0.42 46.28 black thick

VK-66-
tph1tph2

Altered 
tocophe-
rol quality

yes 58 64 37 0.47 52.46 black thick

VK-66-
OL-tph2

High 
oleic and 
altered 
tocophe-
rol quality

yes 60 68 28 0.44 50.96 black thick

RUS-
RF-168

Standard 
restorer

yes 74 134 40 0.49 38.31 black me-
dium

RHA-
SELEUS

Standard 
restorer

yes 71 112 47 0.45 32.49 brown me-
dium

RHA-M-72 Standard 
restorer

yes 70 114 51 0.38 41.38 brown thin

CMS-
ANN-15

Standard 
restorer

yes 53 33 35 0.37 41.12 black thin

RHA-S-
OL-26

High 
oleic 
restorer

yes 69 88 55 0.38 28.43 cream me-
dium

Three mutagenic agents were used

Results and Discussion
All seeds, the control and the irradiated, germinated. The seedling height 
in all three treatments decreased with increasing dose. For gamma irra-
diation the D50 and D30 values for the 15 sunflower inbred line seeds 
ranged from 120Gy and 5Gy, respectively for inbred line HA-19 to 
325Gy and 207Gy, respectively for genotype VK-66-tph1. For fast neu-
tron, the D50 and D30 for seeds of the 15 sunflower inbred lines seeds 
ranged from 9Gy and 0.1Gy, respectively (genotype HA-19) to 21Gy and 
10Gy, respectively (genotype VK-66-tph1tph2). The trend was therefore 
similar to the responses to gamma irradiation by these genotypes. The 
D50 and D30 values for these 15 sunflower inbred line seeds treated with 
EMS ranged from 0.69% and 0.01%, respectively EMS concentration 

(genotype OD-3369) to 1.55% and 0.68%, respectively for the line HA-19 
(Table 2).

The data indicated that all genotypes produced a wide range of 
responses. With respect to radiation damage by Gamma-rays, the 
genotype HA-19 showed the least radiation damage with VK-66-tph1 
displaying the highest damage. In the case of fast neutron, the geno-
type HA-19 was most affected while VK-66-tph1 and VK-66-tph1tph2 
had the least radiation damage. The study of EMS revealed OD-3369 
to be least sensitive while VK-66-tph1tph2 again was highly susceptible. 
Reduction of seedling height was more pronounced in genotype HA-19 
than any other genotype for both gamma and fast neutron irradiation 
and clearly demonstrated a genotypic response to mutagenic treatment. 
Interestingly, the same genotype showed the greatest resistance to high 
doses of EMS, inferring again a genotype - mutagen interaction. This line 
is very early maturing and it has round and large seed. Lines OD-3369 
and V-8931-3-4-OL were generally more sensitive to all three mutagens 
than the others. These inbreds have very high oil contents in the seeds, 
normal sized seeds and high thousand seed mass. Inbred lines VK-66-
tph1, VK-66-tph1tph2 and VK-66-OL-tph2 showed the greatest resistance 
to both physical and chemical mutagenic treatments. These genotypes 
are nearly isogenic lines, with different oil quality but low oil quantity. 
They have large, black seeds but a thick coat that is probably the reason 
for such high resistance to mutagenic treatments. 

Table 2. D50 and D30 values for 15 inbreds for exposure to Gam-
ma-rays, fast neutron bombardment and EMS solution

Genotypes Gamma-rays (GY) Fast neutrons (GY) EMS (%)

D50 D30 Se D50 D30 Se D50 D30 Se

HA-26 202 102 13.28 15 3.6 19.00 1.34 0.50 13.44

VL-A-8 218 100 12.54 12 0.6 22.95 1.41 0.55 12.03

HA-48 220 109 11.84 17 3.8 18.75 1.40 0.58 13.68

HA-19 120 5 22.76 9 0.1 25.67 1.55 0.68 9.82

OD-3369 151 18 20.34 11 0.08 24.56 0.69 0.01 22.39

V-8931-3-4-OL 155 44 15.96 13.5 1.5 21.21 0.82 0.07 22.95

HA-26-OL 181 76 13.39 12.5 1 22.27 1.16 0.43 14.16

VK-66-tph1 325 207 9.03 20 9 15.50 1.41 0.53 13.75

VK-66-tph1tph2 294 151 6.90 21 10 12.61 1.54 0.64 11.79

VK-66-OL-tph2 289 164 3.45 19 8 16.14 1.36 0.55 14.78

RUS-RF-168 201 101 14.33 20 7.3 20.86 1.09 0.30 14.88

RHA-SELEUS 206 95 13.43 15 2.6 21.80 1.15 0.39 12.40

RHA-M-72 188 93 19.03 13 1.7 22.34 1.46 0.62 16.91

CMS-ANN-15 237 146 14.89 13 0.4 20.52 0.94 0.25 13.51

RHA-S-OL-26 197 79 12.89 14.5 2 15.11 1.36 0.50 16.17

The three mutagenic agents affected seedling height, reducing it with 
increasing dosage. Based on the mutagen damage on seedling height, 
the D50 and D30 values for 15 sunflower genotypes were estimated for the 
three mutagens. Retardation of growth due to the mutagenic treatments 
has been used to determine the dose rate for mutation induction. It is 
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the most functional parameter to be used in radiobiological investiga-
tions because it is generally considered to be a result of primary injury 
due to nuclear DNA damage. Sensitivity in seedlings height had been 
demonstrated in earlier dose response studies of bean [13], soybean [14], 
and other crops.

In this experiment, we established relationships between the D50 values 
due to gamma and fast neutron irradiation and EMS to the thousand 
seed mass (TSM), seed size ratio, oil content in the seed, plant height and 
days to flowering (Table 3). A significant negative correlation was found 
between the treatment and seed oil content, indicating that genotypes 
with relatively high seed oil content were more sensitive to gamma irra-
diation, fast neutrons and EMS. Also, larger seeds were generally more 
resistant to EMS treatment than to gamma and fast neutron irradiation. 
There was a negative correlation between early flowering, short stature 
plants and gamma irradiation. Mutagenic damage depended on the bio-
logical traits of the variety. 

Table 3. Correlations between biological traits and re-
sponse to mutagenic treatments

Biological traits Gamma-rays Fast neutrons EMS

TSM 0.15 0.00 0.14

Seed size ratio -0.17 -0.18 0.38*

Oil content -0.69** -0.37* -0.39*

Plant height -0.39* -0.20 0.11

Days to flowering -0.41* -0.14 -0.24

r(0.05)=0.349 r(0.01)=0.449

The results obtained from this study indicated that the radiation 
damage due to mutagenic treatment was not similar amongst the geno-
types. The same differential response to radiation among different geno-
types in plant species was reported by many researchers. These inter-
varietal differences in radiation damage to seeds have been reported 
to be: a) under polygenic system in rice, tomato and barley [15], [16], 
[17], [18], [19], b) major gene control in einkorn wheat and soybean 
[20], [21], and c) influenced by heterozygosity in maize and peanut [22], 
[23], [24]. It is widely accepted that response to mutagens is species and 
genotype dependent, but the full explanation has not yet been provided. 

The different D50 (D30) values for sunflower inbreds were established: 
dose range of 120 to 325Gy (5 to 207Gy) for gamma irradiation, 9 to 
21Gy (0.1 to 10Gy) for fast neutrons irradiation and 0.69 to 1.55% (0.01 
to 0.68%) concentration of EMS. The radiation sensitivity studies indi-
cated that all the genotypes treated exhibited a wide range of radiation 
damage to Gamma-rays and fast neutrons. 

Based on the radiation damage, bulk irradiation with a dose giving 
rise to a 30% to 50% reduction in growth will be carried out and M1 
plants will be grown in the field. Different mutations will be observed 
in the field and promising mutants will be selected for further testing. 
Selection  will be carried out in the M2 generation for early flowering, 
short stature, deformations of leaves and heads, appearance of branches, 
head inclination, sterility and oil seed quantity and quality. 
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