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Pejin, J. Modeling and Optimization of

Triticale Wort Production Using an

Artificial Neural Network and a Genetic

Algorithm. Foods 2024, 13, 343.

https://doi.org/10.3390/foods13020343

Academic Editors: Zhiming Guo and

Weiqing Min

Received: 28 November 2023

Revised: 11 January 2024

Accepted: 18 January 2024

Published: 22 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

foods

Article

Modeling and Optimization of Triticale Wort Production Using
an Artificial Neural Network and a Genetic Algorithm
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Abstract: Triticale grain, a wheat–rye hybrid, has been reported to comply very well with the
requirements for modern brewing adjuncts. In this study, two triticale varieties, in both unmalted
and malted forms, were investigated at various ratios in the grist, applying different mashing regimes
and concentrations of the commercial enzyme Shearzyme® 500 L with the aim of evaluating their
impact on wort production. In order to capture the complex relationships between the input (triticale
ratio, enzyme ratio, mashing regime, and triticale variety) and output variables (wort extract content,
wort viscosity, and free amino nitrogen (FAN) content in wort), the study aimed to implement the use
of artificial neural networks (ANNs) to model the mashing process. Also, a genetic algorithm (GA)
was integrated to minimize a specified multi-objective function, optimizing the mashing process
represented by the ANN model. Among the solutions on the Pareto front, one notable set of solutions
was found with objective function values of 0.0949, 0.0131, and 1.6812 for the three conflicting
objectives, respectively. These values represent a trade-off that optimally balances the different
aspects of the optimization problem. The optimized input variables had values of 23%, 9%, 1, and
3 for the respective input variables of triticale ratio, enzyme ratio, mashing regime, and triticale
variety. The results derived from the ANN model, applying the GA-optimized input values, were
8.65% w/w for wort extract content, 1.52 mPa·s for wort viscosity, and 148.32 mg/L for FAN content
in wort. Comparatively, the results conducted from the real laboratory mashing were 8.63% w/w
for wort extract content, 1.51 mPa·s for wort viscosity, and 148.88 mg/L for FAN content in wort
applying same input values. The presented data from the optimization process using the GA and the
subsequent experimental verification on the real mashing process have demonstrated the practical
applicability of the proposed approach which confirms the potential to enhance the quality and
efficiency of triticale wort production.

Keywords: triticale; adjuncts; mashing; artificial neural network; genetic algorithm

1. Introduction

Brewing is one of the oldest food processes that began in the Middle East 10,000 years
ago and currently is one of the leading food industries in the world. Over the last thirty
years, there has been a remarkable increase in the demand for beers produced on a small
scale and via a slower fermentation process, namely craft beers. One of the main character-
istics of craft beers is the utilization of non-standard cereals [1–3].

Beer is typically brewed using raw ingredients including malt, yeast, hops, and water,
which are transformed during consecutive and complex technological processes [3]. Tra-
ditionally, barley, in its malting form, is a common choice. The three main steps that can
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ensure biochemical changes occur within the grain during malting are steeping, germina-
tion, and kilning. The production of enzymes in the germinating cereal grain, which causes
changes in the chemical constituents of barley in preparation for mashing, can be stated as
the main aim of malting [4]. However, the enzymes developed during malting do have
some limitations, as they can only work in certain environments, and their activity might
be too low to properly degrade certain substances [5,6]. In comparison with endogenous
enzymes, commercial enzymes are more active and stable at preferred mashing conditions.
The addition of commercial enzymes can make the brewing process far more consistent
and can create the opportunity to use cheaper or poorer quality raw materials [5]. With
the above in mind, it can be assumed that today’s brewing cannot continue without the
utilization of commercial enzymes [7].

As the malting process is not economically efficient, brewers often seek various strate-
gies for cost reduction. Accordingly, the use of barley malt substitutes, as a source of
extract, can be part of the solution. These materials, which bring additional sources of
carbohydrates and protein into the wort, are called adjuncts [1,8,9].

The main disadvantage in terms of adjunct processability is their lower levels of
cytolytic, proteolytic, and amylolytic enzymes compared to barley malt. However, there are
a few examples of deviations from this rule, as some adjuncts, among which is triticale, may
provide further enzymatic activity [8,10]. Even in its unmalted form, triticale can produce
high levels of α-amylase. Besides that, having a low starch gelatinization temperature
(59–65 ◦C) brings an advantage in achieving efficient starch degradation, similar to barley
malt [11,12].

Of all beer production stages, mashing is a crucial step, since it determines the com-
position of the wort, which has a major influence on yeast fermentation and final beer
quality [13,14]. Grist ratios, mashing temperatures, as well as the time required for enzymes
present in grains to convert specific substances, have to be adjusted to accomplish the opti-
mal mashing process [14]. Since modern brewing practice requires modified mashing in
terms of applied temperatures, owing to the increased amount of adjuncts in the grist, the
standard Congress mashing method could be questioned [15].

In the past, food-related studies were conducted using more conventional approaches.
However, nowadays, the development and adoption of new technologies are dramatically
accelerated. This rapid technological change affects almost all areas of life, including the
food industry [16].

The implementation of novel modeling and optimization methods in brewing holds
the promise for enhancing economic efficiency without compromising the distinct sensory
characteristics of the beer. For this reason, an artificial neural network (ANN) can be used.
In recent years, the application of ANNs has become a useful tool to increase accuracy and
time, and reduce costs in analytical methods. Therefore, ANN modeling has the potential
to solve problems by bypassing traditional approaches [17,18].

The brewing process, as a bioprocess, can be illustrated by empiric mathematical mod-
els, due to variable interactions and complex biochemistry reactions, which require efficient
the modeling methodologies. ANNs are distinguished by their nonlinear aspect; therefore,
they can detect complex nonlinear correlations between dependent quality parameters and
independent process parameters. The advantage of employing neural networks lies in the
fact that without having exhaustive knowledge about a specific process, the network can
learn from previous experiences to predict the system’s behavior when some variables
are modified. To make the selection of ANN topology more accurate, which depends on
various features such as a number of hidden layers, number of neurons of hidden layers,
and connections among neurons, using evolutionary algorithms can be a valuable asset. As
such, GAs have been applied in studies of bioprocess optimization from experimental data
using ANNs, to optimize their topologies and to deal with the optimization of multiple
objective functions [17,18]. The concept of many-objective optimization has emerged as
a powerful approach to efficiently explore the trade-offs between multiple objectives and
identify a set of solutions that represent the best compromise solutions [19]. GAs mimic
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the biology of chromosome generation with operators such as mutation, crossover, and
the selection criteria of the random population of individuals. By applying an objective
function, each individual is evaluated based on a fitness criterion [20].

ANNs and GAs showed remarkable ability in modeling and optimizing various
processes. Specifically, within the brewing industry, these artificial intelligence techniques
were effectively employed to enhance fermentation processes [21]. A dynamic neural
network was developed, comprising adapted neurons to account for process dynamics. This
model accurately captured the intricate, non-linear nature of beer fermentation, enabling
predictions of future process behaviors. Also, an ANN was used in beer classification
to build a classification model based on the relevant features of beer [22]. As one of
the most relevant components of beer taste, the control of acetic acid content is very
important to maintain consistent beer quality. For that reason, an ANN and a support
vector machine were applied to predict acetic acid content at the end of commercial-scale
beer fermentation [23]. ANNs and GAs were not only applied in the brewing process, but
also to optimize the further utilization of brewing bio-waste materials such as brewers’
spent grain [20], where the biosynthesis of poly-β hydroxybutyrate from brewers’ spent
grain was modeled and optimized using an ANN–GA strategy. Besides that, better control
of a brewery’s waste water was achieved by developing a robust mathematical tool for
performance prediction using an ANN [24].

Although ANNs and GAs have commonly been utilized in studying the final fermen-
tation process in brewing, there remains a gap in research regarding their application in
modeling and optimizing the production of wort. Therefore, this study aimed to develop a
new approach to the mashing process, applying an ANN model that used the data obtained
from a laboratory wort production of two triticale varieties—NS Paun and Odisej—in
unmalted and malted forms. The conventional Congress mash protocol and a modified
temperature variation regime, with and without the application of a commercial enzyme,
were explored. Moreover, a multi-objective optimization approach based on a GA was
developed to optimize the conditions needed to obtain the best wort quality.

2. Materials and Methods
2.1. Materials

Two winter triticale varieties—NS Paun and Odisej, both accepted in Serbia and the
European Union—were examined in unmalted and malted forms. They were grown in
experimental fields in Rimski Šančevi, Serbia. As a control sample, commercial barley
malt type Pilsner, produced by malthouse Maltinex Soufflet Group, Bačka Palanka, Serbia,
was used. Commercial enzyme Shearzyme® 500 L as xylanase (endo-1,4-; produced by
Aspergillus oryzae) was kindly provided by Novozymes A/S (Bagsvaerd, Denmark). For free
amino nitrogen (FAN) content determination, the following chemicals were purchased from
Sigma-Aldrich: disodium hydrogen phosphate dodecahydrate, potassium dihydrogen
phosphate, ninhydrin, fructose, potassium iodate, ethanol 96%, fructose, and glycine.

2.2. Methods

The flowchart in Figure 1 summarizes the overall process of mashing, modeling, and
optimization of triticale wort production.
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Figure 1. Flowchart of mashing, modeling, and optimization of triticale wort production. 
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The mashing process consists of several successive steps, as can be seen in Figure 1. 

In this study, triticale was utilized in two forms—unmalted and malted cereal. In order to 
produce malt, a micro-malting pilot plant consisting of a steeping, germination, and kiln-
ing unit (Seeger, Germany, at the Faculty of Technology, Novi Sad, Serbia), with the fol-
lowing malting program: 3 days of steeping with a wet and dry cycle at 15 °C (1st day—6 
h wet, 18 h dry; 2nd day—4 h wet, 20 h dry; and 3rd day—2 h wet, 22 h dry) was used. 
The germination phase lasted 4 days at 16 °C. After that, green malts were dried by ap-
plying the following kilning temperatures: 55 °C for 15 h, 72 °C for 5 h, 82 °C for 3 h. The 
rootlets generated during germination were eliminated from the malts by deculming. 

To quantify the main wort quality indicators, cereal samples were finely milled in a 
laboratory disc mill, DLFU (Bühler GmbH, Braunschweig, Germany), at 0.2 mm. Mashes 
were prepared in mechanically stirred metal beakers in a mash bath (Lochner Labor Tech-
nik GmbH, Berching, Germany) using 50 g of grist in total mixed with 200 mL distilled 
water. After the mashing process, to obtain extracted liquid wort, mashes were filtered. 

In this study, mashing processes were performed as described in Table 1. 
  

Figure 1. Flowchart of mashing, modeling, and optimization of triticale wort production.

2.2.1. Mashing Process

The mashing process consists of several successive steps, as can be seen in Figure 1.
In this study, triticale was utilized in two forms—unmalted and malted cereal. In order to
produce malt, a micro-malting pilot plant consisting of a steeping, germination, and kilning
unit (Seeger, Germany, at the Faculty of Technology, Novi Sad, Serbia), with the following
malting program: 3 days of steeping with a wet and dry cycle at 15 ◦C (1st day—6 h wet,
18 h dry; 2nd day—4 h wet, 20 h dry; and 3rd day—2 h wet, 22 h dry) was used. The
germination phase lasted 4 days at 16 ◦C. After that, green malts were dried by applying
the following kilning temperatures: 55 ◦C for 15 h, 72 ◦C for 5 h, 82 ◦C for 3 h. The rootlets
generated during germination were eliminated from the malts by deculming.

To quantify the main wort quality indicators, cereal samples were finely milled in a
laboratory disc mill, DLFU (Bühler GmbH, Braunschweig, Germany), at 0.2 mm. Mashes
were prepared in mechanically stirred metal beakers in a mash bath (Lochner Labor Technik
GmbH, Berching, Germany) using 50 g of grist in total mixed with 200 mL distilled water.
After the mashing process, to obtain extracted liquid wort, mashes were filtered.

In this study, mashing processes were performed as described in Table 1.
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Table 1. Mashing processes applied in the wort production.

In
de

pe
nd

en
t

va
ri

ab
le

s

Triticale variety ‘NS Paun’ and ‘Odisej’ both in unmalted and malted forms

Triticale ratio in the grist (%) 10, 30, 50, and 70

Enzyme quantity (µL) 50, 10, and 5

Mashing regime

Congress mashing [25]: Initial temperature of 50 ◦C was maintained for
40 min. The temperature was then increased to 63 ◦C and held for 45 min.
After the addition of a further 100 mL of distilled water, temperature was

raised to 70 ◦C and held for 30 min. Final temperature of 76 ◦C was
maintained for an additional 10 min.

Modified mashing [26]: Initial temperature of 45 ◦C was maintained for 30 min
before it was increased up to 70 ◦C at 1 ◦C/min. After the addition of a further

100 mL of distilled water, the temperature was maintained at 70 ◦C for a
further 60 min.

D
ep

en
de

nt
va

ri
ab

le
s

Quality parameters Wort extract content, wort viscosity, and FAN content

The variation in independent variables directly influenced key wort quality indicators,
crucial in determining high-quality wort: extract content, viscosity, and FAN content
of wort.

The aim of mashing is to yield as much extract content from the grain as possible,
which is further related to the soluble fermentable sugars in wort and is correlated with
high concentrations of ethanol produced during fermentation. Wort extract content, which
refers to the compounds from finely milled malt that are brought into solution during a
mashing process, was determined by MEBAK method 3.1.4.2.2 [25] using Pyknometers on
the basis of the official Plato tables.

In this study, high wort viscosity was observed, which is a common occurrence when
adjuncts are utilized. Therefore, the commercial enzyme Shearzyme® 500 L was added
to the mashes. At the beginning of experiments, 50 µL of enzyme per beaker was used,
according to the producer’s recommendations. However, initial enzyme concentration
significantly reduced wort viscosity (discussed below). Therefore, in further experiments,
enzyme concentration was optimized, e.g., reduced to achieve an adequate wort viscosity
as well as to bring down total production costs. The final enzyme concentration was 5 µL
per beaker. The viscosity of the wort was measured using a Höppler falling ball viscometer
(Brookfield Engineering Laboratories, Inc., Stoughton, MA, USA). Following the MEBAK
method 3.1.4.4.1 [25], the amount of time required for a special ball to fall while sinking
through a glass tube filled with a wort, between two marks, was measured.

FAN content has been regarded as a superior parameter that represents nitrogen
compounds which may be assimilated or metabolized by yeast during fermentation. The
problem arises when the most commonly used adjuncts usually decrease the FAN content
of wort [27,28]. However, triticale stood out as a cereal that contributes a considerable
amount of proteolytic enzyme activity, even in its native form [29]. FAN content in the
wort, as reported in MEBAK method 3.1.4.5.5.1 [25], was measured by spectrophotometry.
Sample was diluted 1:100. A total of 2 mL of sample was put in a test tube with 1 mL of
color reagent and placed in a boiling water bath for exactly 16 min and then cooled to
20 ◦C for 20 min. Then, 5 mL of dilution solution was added to the test tube, mixed, and
absorbance was measured at 570 nm against a reagent blank.

2.2.2. Mashing Process Modelling

In this study, an ANN is proposed as a modeling tool to capture the complex relation-
ships between the input (independent) variables and output (dependent) variables in the
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mashing process for triticale wort production (Figure 1). For that purpose, Deep Learning
Toolbox from Matlab was used.

ANNs are computational models inspired by the structure and functioning of the
human brain. They consist of interconnected nodes, or neurons, organized in layers. ANNs
learn from data by adjusting the weights of connections between neurons through a training
process, enabling them to recognize patterns. The network utilizes mathematical functions,
called activation functions, to compute the output of each neuron based on the weighted
sum of its inputs.

In this research, a three-layer feed-forward ANN with sigmoid activation function
in hidden neurons and linear activation function in output neurons was developed for
predicting the characteristics of wort. Network inputs were carefully designed as four
indicators with the greatest impact on prediction performance—triticale ratio, enzyme ratio,
mashing regime index, and triticale variety index.

The grist included different triticale ratios: 10%, 30%, 50%, and 70%. The enzyme
ratio, which denotes the percent value of the concentration of the commercial enzyme
Shearzyme® 500 L, was scaled to 50 µL (100%). Based on that, 10 µL quantity was scaled as
20% and 5 µL quantity as 10%. Maintaining uniformity in the range of input data is crucial
for better convergence and improved performance. The mashing regime index reflected
two different mashing regimes (Congress–1 and Modified–2). The triticale variety index
represented two triticale varieties in different forms utilized in the process (unmalted NS
Paun–1, unmalted Odisej–2, malted NS Paun–3, and malted Odisej–4). Network outputs
were carefully designed as three indicators for wort quality estimation—wort extract
content, wort viscosity, and FAN content.

The number of neurons in the first hidden layer is denoted as n and the number of
neurons in the second hidden layer is denoted as m. The optimal number of neurons in
each layer m and n was determined through systematic experimentation. The selected
configuration, obtained through iterative optimization on a validation set, strikes a bal-
ance between model complexity and generalization, ensuring optimal performance. The
architecture of the model is illustrated in Figure 2.
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In this study, three different training functions, namely Levenberg–Marquardt, Bayesian
regularization, and scaled conjugate gradient algorithm (implemented in Deep Learning
Toolbox from Matlab), were employed to optimize the ANN model using the comprehen-
sive and well-structured dataset.
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The Levenberg–Marquardt training function is a widely used method in ANN training.
It combines the advantages of both the gradient descent and Gauss–Newton methods,
offering robustness and fast convergence. By adjusting the damping factor during the
training process, the algorithm effectively balances the stability and speed of convergence,
ensuring accurate predictions for the mashing process.

Another training function utilized in this study was Bayesian regularization. This
method incorporates Bayesian principles to improve the generalization ability of ANN
models. It employs prior knowledge to guide the learning process and prevent overfitting,
where the model becomes overly specialized to the training data and fails to generalize to
new instances.

The third training function employed in this study was the scaled conjugate gradi-
ent algorithm. It is a variant of the conjugate gradient method that adapts the learning
rate dynamically during the training process. As a result, it optimizes ANN models
by efficiently traversing the error surface, leading to faster convergence and improved
prediction accuracy.

By employing three different training functions, the study aimed to thoroughly ex-
plore the optimization landscape and identify the most effective approach for training
the ANN model. By comparing and evaluating the performance of the ANN models
trained with these training functions, valuable insights can be gained regarding the most
suitable approach for accurately modeling and predicting the mashing process in triticale
wort production.

2.2.3. Mashing Process Model Optimization

In this study, the GA optimization method was proposed as a powerful approach to
optimize the input variables in the mashing process for triticale wort production (Figure 1).
For that purpose, Global Optimization Toolbox from Matlab was used.

A genetic algorithm is a search heuristic inspired by the process of natural selection. It
starts with a population of potential solutions represented as individuals in a population.
These individuals undergo evolution through processes such as selection, crossover (re-
combination), and mutation. The fittest individuals, as determined by a fitness function,
are more likely to be selected and pass their genetic information to the next generation.
Over successive generations, the algorithm converges towards optimal or near-optimal
solutions, mimicking the principles of natural evolution to find solutions to optimization
and search problems.

The GA efficiently explored the solution space and converged towards a set of solutions
that optimized the desired wort quality objectives. The integration of the GA with the
mashing process model, which incorporated ANNs, enabled the optimization of input
variables based on their impact on wort quality, offering improved control and efficiency in
triticale wort production.

To optimize the mashing process represented by the ANN model, a GA was employed
to find the combination of input parameters that yielded the most suitable outputs satisfying
the multi-objective function. Through the iterative process of GA optimization, the ANN
model was able to converge on the most favorable combination of inputs, resulting in
improved predictions of wort production characteristics.

In the optimization process, the input variables triticale ratio, enzyme ratio, mashing
regime index, and triticale variety index were constrained only to their natural bounds
(between minimum and maximum possible values).

To accurately reflect the importance of the model outputs in the optimization, we
introduced penalties that scaled the output of the objective function. By incorporating
these penalties, we ensured a balanced consideration of both the primary objective and
the influence of the model outputs. Through this approach, our optimization procedure
effectively captured the intricate relationships between the inputs, outputs, and penalties,
allowing for an informed decision-making process that optimized the primary objective
while appropriately accounting for the impact of the model outputs.
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The penalties modified the fitness value of each chromosome in the GA optimization
process. A higher penalty value indicated poorer fitness, discouraging the selection of chro-
mosomes that violated constraints or deviated from preferred input variable combinations.

As there is no specifically defined range of wort extract content in Brewer’s analytics,
in this study, we aimed for wort extract to be in the range of the control sample—100%
barley malt (8.57% w/w) and the highest achieved value in triticale-based wort (8.89%
w/w—70% ratio of variety NS Paun malt without enzyme addition).

The desired value for wort extract was we* is 8.65% w/w (randomly chosen from
obtained wort extract content results which complied with above mentioned criterion), so
the penalty function Pe for wort extract is as follows:

Pe =


we > 8.89 10

8.57 ≤ we ≤ 8.89 1
we < 8.57, 10

(1)

where we is the current real value of wort extract.
The recommended value for wort viscosity wv ranges from 1.5 m·Pas to 1.6 m·Pas [25]

and the desired value wv* is 1.580 m·Pas (reference value obtained in 100% barley malt
wort), so the penalty function Pv is as follows:

Pv =


wv > 1.5 10

1.5 ≤ wv ≤ 1.6 1
wv < 1.6, 10

(2)

where wv is the current real value of wort viscosity.
The recommended value for FAN content in wort wFAN ranges from 110 mg/L to

180 mg/L [25] and the desired value wFAN* is 147.99 mg/L (reference value obtained in
100% barley malt wort), so the penalty function PFAN is as follows:

PFAN =


wFAN > 110 10

110 ≤ wFAN ≤ 180 1
wFAN < 180, 10

(3)

where wFAN is the current real value of FAN content.
We formulated a multi-objective optimization problem incorporating three primary

objectives. The initial objective was to align the wort extract content with its desired
values as accurately as possible. This objective takes into account a penalty Pe and can be
expressed as follows:

Fe = Pe|we − w∗
e | (4)

The second objective was to closely align the wort viscosity with its desired values.
This objective takes into account a penalty Pv and can be expressed as follows:

Fv = Pv|wv − w∗
v| (5)

The third objective was to achieve a close match of FAN content with its desired values.
This objective takes into account a penalty PFAN and can be expressed as follows:

FFAN = PFAN|wFAN − w∗
FAN| (6)

By minimizing these metrics during the optimization process, we strived to align the
model outputs as closely as possible with their desired values.

By formulating an objective function with penalties, the GA efficiently searches for
solutions that optimize the desired wort quality objectives while satisfying the imposed
constraints and preferences. This approach provides a comprehensive optimization frame-
work that balances multiple objectives and ensures the feasibility and desirability of the
optimized input variable combinations for triticale wort production.
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3. Results and Discussion
3.1. Influence of Triticale Characteristics on Wort Quality

Analysis of the wort was conducted in triplicate, encompassing a total of 384 samples.
For the purpose discussing wort quality, the results of all produced triticale wort were
compared to the control sample—100% barley malt wort (wort extract content—8.57% w/w;
wort viscosity—1.580 mPa·s; FAN content—147.99 mg/L).

The wort results obtained from triticale mashing in the range of 10–70% in grist,
applying both mashing regimes, are shown in Tables 2 and 3.

Table 2. Results of triticale-based wort in 10–70% ratios in grist obtained from Congress mashing.

Outputs

Variety Enzyme Addition Wort Extract Content
(% w/w)

Wort Viscosity
(mPa·s)

Wort FAN Content
(mg/L)

U
nm

al
te

d NS Paun

Without enzyme 8.28–8.49 1.626–1.765 64.1–129.42
50 µL (100%) 8.13–8.38 1.384–1.498 77.23–148.16
10 µL (20%) 8.22–8.39 1.403–1.587 70.81–141.89
5 µL (10%) 8.22–8.46 1.576–1.613 67.23–136.37

Odisej

Without enzyme 8.27–8.47 1.639–2.220 56.0–120.78
50 µL (100%) 8.22–8.33 1.386–1.495 74.62–139.99
10 µL (20%) 8.22–8.43 1.401–1.588 67.33–130.03
5 µL (10%) 8.22–8.45 1.538–1.629 64.24–124.55

M
al

te
d

NS Paun

Without enzyme 8.75–8.89 1.500–1.755 130.95–156.12
50 µL (100%) 8.45–8.80 1.432–1.582 157.43–191.37
10 µL (20%) 8.49–8.81 1.461–1.583 142.19–189.04
5 µL (10%) 8.54–8.83 1.468–1.590 146.98–187.97

Odisej

Without enzyme 8.69–8.78 1.564–1.833 125.80–142.91
50 µL (100%) 8.39–8.71 1.440–1.570 143.37–186.35
10 µL (20%) 8.42–8.74 1.498–1.685 140.50–184.46
5 µL (10%) 8.46–8.77 1.500–1.783 139.76–183.59

Table 3. Results of triticale-based wort in 10–70% ratios in grist obtained from Modified mashing.

Outputs

Variety Enzyme Addition Wort Extract Content
(% w/w)

Wort Viscosity
(mPa·s)

Wort FAN Content
(mg/L)

U
nm

al
te

d NS Paun

Without enzyme 8.21–8.41 1.596–1.650 71.28–134.67
50 µL (100%) 8.12–8.36 1.320–1.432 79.49–151.82
10 µL (20%) 8.12–8.37 1.408–1.491 72.29–147.16
5 µL (10%) 8.28–8.38 1.419–1.527 69.70–140.07

Odisej

Without enzyme 8.23–8.44 1.607–2.060 63.76–132.69
50 µL (100%) 8.20–8.32 1.339–1.446 76.4–144.33
10 µL (20%) 8.21–8.40 1.415–1.522 68.94–138.31
5 µL (10%) 8.20–8.42 1.529–1.618 67.04–135.13

M
al

te
d

NS Paun

Without enzyme 8.69–8.79 1.518–1.713 141.27–159.19
50 µL (100%) 8.42–8.74 1.414–1.502 162.38–198.62
10 µL (20%) 8.48–8.75 1.433–1.529 154.18–192.72
5 µL (10%) 8.52–8.77 1.430–1.562 150.30–188.19

Odisej

Without enzyme 8.65–8.74 1.541–1.790 138.30–149.20
50 µL (100%) 8.38–8.67 1.422–1.563 155.13–192.13
10 µL (20%) 8.40–8.70 1.460–1.680 150.09–188.90
5 µL (10%) 8.41–8.71 1.480–1.720 148.50–184.42

At a 10% ratio (as outlined in Table 2), the unmalted triticale sample of the NS Paun
variety demonstrated the highest extract value of 8.49% w/w. Additionally, samples derived
from a mixture of triticale malt and barley malt exhibited comparable or even higher extract
content when compared to the control sample of barley malt (up to 8.89% w/w for 70%
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triticale malt of the NS Paun variety without enzyme addition—Table 2). These findings are
in accordance with the results obtained by Cioch-Skoneczny et al. (2019) [12] where a 50%
ratio of triticale malt yielded an extract content higher than that obtained in 100% barley
malt wort (8.79 and 8.57% w/w, respectively). The Congress mashing regime, compared to
the modified one, showed higher extract content values in all examined samples. Certainly,
using triticale in both forms notably influenced the concentration of the wort extract.

At the beginning of the experiments, when 50 µL of enzyme was used, viscosity in
all produced wort was significantly reduced, and was lower than the prescribed values
(1.5–1.6 m·Pas) [25]. Therefore, in further experiments, enzyme concentration was refined.
The final amount was 5 µL, where desirable viscosity was obtained when unmalted and
malted triticale were used in 10–50% grist. Overall, the Odisej variety obtained higher
viscosity values compared to those produced from the NS Paun variety. It is important to
emphasize that compared to the 100% barley malt, all examined samples, in both mashing
regimes, had higher viscosity values if the commercial enzyme was not applied. Without
the addition of Shearzyme® 500 L, the unmalted Odisej variety showed up to 2.22 mPa·s
viscosity, while the unmalted NS Paun variety had much lower viscosity values, even when
the highest triticale ratio was applied (1.765 mPa·s—Table 2). When employing unmalted
triticale for wort production, the modified mashing process yielded lower viscosity values
compared to the Congress mashing method. However, according to MEBAK [25], only the
NS Paun variety at 10% ratio in the grist had acceptable values, while none of the wort
produced from the Odisej variety fulfilled the above-mentioned range (1.5–1.6 mPa·s). As
filtration of the wort is one of the most difficult steps in beer production, controlling the
wort viscosity is a crucial moment for a successful brewing process. In this respect, the use
of a commercial enzyme was necessary and, as expected, using Shearzyme® 500 L helped
decrease viscosity.

Almost all examined malt triticale wort, prepared with the Congress mashing regime,
contained FAN contents similar to those of 100% barley malt wort or even higher (Table 2).
As expected, FAN content in malt wort, in both mashing regimes, was higher than in wort
produced with native triticale, since, during malting, grain components degrade and are
more susceptible to enzymes. In this study, the 50% ratio of NS Paun malt showed a similar
concentration as the wort produced from 100% barley malt (147.97 and 147.99 mg/L, respec-
tively), which is in correlation with the results obtained by Cioch-Skoneczny (2019) [12].

3.2. Dataset Analysis

ANNs operate directly on input–output data, so there must be a sufficient number
of data to train the ANN and produce valid results [20]. In this study, a comprehensive
dataset consisting of 384 samples was utilized to develop and evaluate the proposed
models and optimization methods for the mashing process in triticale wort production.
The dataset consisted of carefully collected information on various input (triticale ratio,
enzyme ratio, mashing regime index, and triticale variety index) and output (wort quality
indicators—extract content, viscosity, and FAN content) variables. Statistical parameters
were calculated for all indicators and are given in Table 4.

Table 4. Statistical parameters of research data.

Name of Parameter Min. Max. Mean Std. Dev.

In
pu

ts

Triticale ratio (%) 10 70 40 22.39
Enzyme ratio (%) 0 100 32.5 39.66

Mashing regime index 1 2 1.5 0.5
Triticale variety index 1 4 2.5 1.12

O
ut

pu
ts Wort extract content (% w/w) 8.12 8.89 8.47 0.2

Wort viscosity (mPa·s) 1.320 2.220 1.56 0.13
FAN content (mg/L) 56.0 198.62 130.48 39.32
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By utilizing this comprehensive and well-structured dataset, the proposed models and
optimization methods could be effectively developed, validated, and evaluated.

The dataset was divided into appropriate subsets for training, validation, and testing.
The training subset was used to train the models, allowing them to learn the relationships
between the input variables and the corresponding output variables. The validation subset
was employed to fine-tune the models and assess their generalization ability. Finally,
the testing subset served as an independent evaluation set to objectively measure the
performance of the trained models and optimization methods.

The dataset served as a valuable resource for capturing the complex relationships
between the input variables and the output variables, facilitating the modeling and opti-
mization of the mashing process for triticale wort production.

The careful curation and division of the dataset into subsets for training (340 samples),
validation (36 samples), and testing (8 samples) ensured the reliability and accuracy of the
proposed models and optimization methods. By leveraging this comprehensive dataset,
the study aimed to advance our understanding of the mashing process and enhance the
quality and efficiency of wort production in the brewing industry.

3.3. ANN Training Results

The training of ANN models is a critical step in developing reliable and accurate
predictions for the mashing process in triticale wort production. The training process
involved adjusting the weights and biases of the neurons iteratively using optimization
algorithms to minimize the error between the predicted outputs and the actual values in
the training dataset.

To evaluate the performance and generalization ability of the trained ANN model, a
separate validation dataset was used. The validation dataset consisted of samples that were
not included in the training dataset. The model’s predictions for the validation dataset
were compared to the actual values, and various metrics, such as mean squared error (MSE)
or correlation coefficients, were computed to assess the model’s accuracy and reliability.

A total of 231 different values of neurons in both hidden layers (n and m) were tested.
In experiments, the number of neurons ranged in steps of five from ten to sixty neurons in
the first hidden layer and from zero to thirty in the second layer (zero represents omitting
second layer). ANN had four inputs, so it is not recommended to use a number of neurons
in the hidden layer smaller than the number of inputs. Also, a very large number of neurons
often leads to network overfitting and can be time-consuming during the training process.
The training was repeated ten times for each combination of parameters (three training
functions and 231 different numbers of neurons in hidden layers). This yielded 6.930
(3 × 231 × 10) treatments for the ANN. The best training function, the most appropriate
number of neurons in the hidden layers, and the best combination of both were determined
in these experiments.

The Levenberg–Marquardt training algorithm yielded optimal results for the ANN
model, achieving peak performance with 45 neurons in the first hidden layer and 25 neurons
in the second hidden layer. The training concluded after 180 epochs, with a final mean
squared error (MSE) of 0.001 on the entire training dataset in the last epoch, as illustrated
in Figure 3a.

Similarly, the scaled conjugate gradient training algorithm demonstrated its effective-
ness with the ANN model featuring forty neurons in the first hidden layer and five neurons
in the second hidden layer. The training process spanned 1000 epochs, and in the last epoch,
the MSE on the complete training dataset was 0.04. The convergence pattern is depicted
in Figure 3b.

For the Bayesian regularization training algorithm, optimal results were achieved
with an ANN model comprising 30 neurons in the first hidden layer and 10 neurons in the
second hidden layer. Training concluded after 500 epochs, and in the last epoch, the MSE
on the entire training dataset was an impressively low 0.000084. The convergent graph for
this algorithm is displayed in Figure 3c.
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Figure 3. Training performances for the best ANN models obtained for three training algorithms
separately; (a)—Levenberg–Marquardt training algorithm; (b)—scaled conjugate gradient training
algorithm and (c)—Bayesian regularization training algorithm.

It is important to highlight that the Bayesian regularization algorithm exhibited supe-
rior performance when compared to the other two algorithms, ultimately yielding the most
favorable outcomes.

3.4. ANN Test Results

To assess the performance and reliability of the trained ANN model, the testing phase
was conducted using a set of eight samples. These samples represented real-world scenarios
and were carefully selected to cover a diverse range of input variable combinations for the
mashing process.

During the testing phase, the eight samples were fed into the trained ANN model,
and the predicted output variables were compared with their respective actual values. The
performance of the model was evaluated by calculating various metrics, such as its mean
and minimum and maximum values. The obtained results can be seen in Figure 4.
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Figure 4. Test results for the proposed neural network model.

In Table 5, key metrics for the test results are presented, including minimum and
maximum absolute errors, mean absolute error, mean square error, root mean square
error, and mean absolute percentage error. These metrics offer a concise assessment of our
model’s accuracy, precision, and overall predictive performance on the test dataset.

Table 5. Test results metrics.

Min.
abs.

Error
Max. abs.

Error
Mean abs.

Error
Mean Square

Error
Root Mean

Square
Error

Mean abs.
Percent.

Error

Wort extract 0.001 0.007 0.004 0.00002 0.005 0.05
Wort viscosity 0 0.005 0.002 0.00001 0.002 0.13
FAN in wort 0.01 0.03 0.016 0.0003 0.018 0.015

The results obtained from the testing phase revealed a high degree of accuracy and
precision in the predictions of the trained ANN model for all eight samples. The calculated
error metrics indicated very small deviations between the predicted and actual values,
emphasizing the model’s ability to effectively capture the complex relationships within the
mashing process and make accurate estimations of the desired wort quality indicators.

These findings demonstrated the robustness and generalizability of the trained ANN
model. The model’s consistent and accurate predictions across the eight samples suggest
its reliability in providing precise estimations of the output variables for various input com-
binations. This indicates the potential of the trained ANN model to be applied in practical
brewing scenarios to optimize the mashing process and enhance triticale wort production.

3.5. Optimization Results Applying GA

The genetic algorithm was employed to optimize the mashing process for triticale
wort production, considering three conflicting objectives simultaneously. The objective
functions aimed to address different aspects of the optimization problem, leading to a multi-
objective optimization task. The chosen approach for assessing the best set of solutions
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involved evaluating the Pareto front, which represents the trade-off solutions between the
conflicting objectives.

Specific parameters for the GA were configured to address the multi-objective nature
of the optimization problem. The population size ranged from 40 to 80 individuals in steps
of five and with a crossover rate of 0.8 and a mutation rate of 0.1. Tournament selection was
utilized as the selection mechanism, selecting parents based on their fitness with respect to
the multiple conflicting objectives.

The GA optimization process involved exploring the Pareto front to identify a set of
solutions that provide a balanced trade-off among the conflicting objectives. The termina-
tion criteria were based on predefined conditions associated with the convergence of the
Pareto front.

The optimization experiment was repeated five times for each combination of parame-
ters, resulting in 40 (8 × 5) optimization attempts. Among the solutions on the Pareto front,
one notable set of solutions was found with objective functions values of 0.0949, 0.0131, and
1.6812 for the three conflicting objectives, respectively. These values represent a trade-off
that optimally balances the different aspects of the optimization problem.

The corresponding input values for this solution on the Pareto front are shown in
Table 6. This solution, achieved with a population size of 50 after 70 generations, is
recognized as the best solution among the optimization experiments, demonstrating the
most favorable trade-off among the conflicting objectives.

Table 6. The optimized input variables obtained from the GA.

Inputs Result

Triticale ratio (%) 23
Enzyme ratio (%) 9

Mashing regime index Congress–1
Triticale variety index Malted NS Paun–3

The analysis of the Pareto front provided insights into the solutions that achieved
a balance among the conflicting objectives. The selected set of solutions demonstrated a
substantial improvement in the overall objective values compared to the initial population,
indicating the successful convergence of the GA towards solutions on the Pareto front.

As observed in Figure 5, the upper segment depicts the Pareto front, illustrating the
trade-offs and optimal compromises between conflicting objectives. Meanwhile, the lower
portion represents a score histogram in Figure 5, offering insights into the distribution of
fitness values throughout the optimization process. Together, these visualizations provide
a comprehensive understanding of the diverse solutions and the quantitative performance
across specific fitness ranges.

The successful convergence of the GA towards optimal solutions is evident from
both the Pareto front analysis and the score histogram. The results indicate a substantial
improvement in the objective function compared to the initial population, underscoring
the efficacy of the multi-objective optimization approach.

The obtained fitness values and the corresponding input–output values highlight the
success of the GA in finding an optimized solution for the mashing process in triticale
wort production. These results demonstrate the ability of the GA to identify input variable
combinations that lead to improved wort quality, as reflected in the obtained output values.

The resulting outputs corresponding to these optimized input variables were mea-
sured as 8.65% w/w for wort extract content, 1.52 mPa·s for wort viscosity, and 148.32 mg/L
for FAN content in wort. These values indicated the predicted levels of these wort quality
indicators based on the optimized input variables obtained through the GA optimiza-
tion process.
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3.6. Experimental Verification

After obtaining the optimization results for the input variables (Table 6), an experimen-
tal verification was performed using actual laboratory mashing to validate the effectiveness
of the optimized input variable combinations. Wort analyses were performed again in
triplicate and the corresponding results are presented in Table 7.

Table 7. Optimization results applying GA and results obtained from real mashing process.

Wort Extract Content
(% w/w)

Wort Viscosity
(mPa·s)

FAN Content
(mg/L)

GA optimization results 8.65 1.52 148.32
Real mashing process 8.63 ± 0.01 1.51 ± 0.02 148.88 ± 0.02

The experimental verification of the real mashing process served as a crucial step in
validating the effectiveness of the optimization results and the ANN model. Results from
Table 7 demonstrate a very close agreement between the GA-optimized values and the
values obtained from the real mashing process and validate the effectiveness in predicting
and achieving the desired wort quality.

4. Conclusions

The data presented in this work strongly indicate that triticale shows high potential
and it is suitable to serve as a brewing adjunct, as it fulfills the most important requirements
for wort production. From the presented parameters (Tables 2 and 3), it is noticeable that
triticale influenced the concentration of the wort extract, especially in the form of malt,
where extract content was similar to or even surpassed the control sample of barley malt
used in research. Regarding wort viscosity, compared to the 100% barley malt, all examined
samples had higher viscosity values if the commercial enzyme was not applied. Among
the two varieties examined, NS Paun was identified as more suitable in that aspect. The use
of a commercial enzyme was necessary and, as expected, using Shearzyme® 500 L helped
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decrease viscosity which aids wort filtration. FAN content in malt wort, in both mashing
regimes, was higher than in wort produced with native triticale.

The utilization of ANNs in triticale wort production has demonstrated its effectiveness
in modeling the mashing process. By leveraging the capabilities of ANNs, it becomes pos-
sible to accurately predict wort quality based on various input variables, such as triticale
variety, triticale ratios, mashing regimes, and enzyme concentrations. The integration of
ANNs with GAs further enhanced the optimization process, allowing for the identification
of optimal input combinations that minimize specific objective functions related to wort
quality. The application of ANNs in the brewing industry represents a significant advance-
ment, enabling brewers to achieve improved control and efficiency in the production of
high-quality triticale wort.

The results obtained from the optimization process using a GA and the subsequent
experimental verification on the real mashing process have demonstrated the practical
applicability of the proposed approach which confirms the potential to enhance the quality
and efficiency of triticale wort production.
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