COST Action CA18111 "Genome Editing in Plants"

Book of Abstracts

$3^{\text {rd }}$ PlantEd conference

5-7 September 2022
Düsseldorf, Germany

Sponsoring:

CEPLAS
Cluster of Excellence on Plant Sciences
agriscience

Pflanzen
r

LOCAL ORGANIZERS

Heinrich-Heine-University: Dr. Götz Hensel

Cluster of Excellence on Plant Sciences Brigitte Haumann

Local organizer contact persons:
Dr Götz Hensel
Mob: +49 15117680632
Phone: +49 2118110296
E-mail: goetz.hensel@hhu.de

Brigitte Haumann
Phone: +49 2118110672
E-mail: brigitte.haumann@hhu.de

INTERNATIONAL ORGANIZERS

International organizer contact persons:
Dennis Eriksson
E-mail: Dennis.Eriksson@slu.se

Katrijn Van Laere
E-mail: katrijn.vanlaere@ilvo.vlaanderen.be

\square
\square
\square
EUROPEAN COOPERATION IN SCIENCE AND TECHNOIOGY

Conference Program

3rd PlantEd conference

Dusseldorf, Germany - September 5-7, 2022

Monday September 5, 2022

Session Chair - Dennis Eriksson - Lecture Hall 6L

09:00-09:15

9:15-09:40

09:40-10:20
10:20-10:50
What do we know? - Technological advances
10:50-11:10

11:10-11:30

11:30-11:50
11:50-12:10

12:10-12:30
12:30-13:30

13:30-13:50

13:50-14:10

14:10-14:30

14:30-14:50
14:50-15:10
15:10-15:30
15:30-16:00
16:00-18:00

Welcome Local Organizer Götz Hensel; HHU Dusseldorf/Germany
Welcome Dean Faculty of Mathematics and Natural Sciences Peter Kleinebudde; HHU Dusseldorf/Germany

Welcome COST Action Chair Dennis Eriksson
Keynote Andreas PM Weber; HHU Dusseldorf/Germany
Tackling grand challenges with plant sciences
Keynote Jens Boch; Hannover/Germany
TALEs, TALEN and TALE-base editors - tools, techniques and applications
Coffee break - Botanical Garden
Ian Godwin; QAAFI Centre for Crop Science/Australia
Editing the way to resilient high-value cereals
Uriel Urquiza-Garcia, HHU Dusseldorf/Germany
Biodesign automation for optimal assembly of polycistronic sgRNAs and crRNAs
Sruthy Maria Augustine; Department of Plant Breeding, Giessen/Germany Genome editing for crop improvement

Sadiye Hayta; John Innes Centre, Norwich/UK
Genotype Independent Wheat Transformation with GRF-GIF Protein Fusion
José Hernandes-Lopes; Universidade Estadual de Campinas/Brazil
Unlocking the genome editing potential for maize breeding in the tropics
Lunch - Botanical Garden
Jan Schaart; Wageningen University and Research, Wageningen/The Netherlands Which Cas-enzymes work best for induction of targeted mutations?
Virginia Zahn; Thünen Institute of Forest Genetics, Grosshansdorf/Germany
Combining bacterial and viral elements for efficient gene targeting in poplar
Mark Smedley; John Innes Centre, Norwich/UK
Deploying CRISPR-Cas tools to design targeted mutagenesis in wheat
Evelien Waegneer; Institute of Agriculture, Fisheries and Food Research, Melle/Belgium CRISPR and natural variation: complementary approaches for Cichorium haploid induction
Jillis Grubben; Wageningen University and Research, Wageningen/The Netherlands
Inducing kilobase to mega base-sized inversions in tomato using CRISPR/Cas9: The larger, the rarer?
Teodoro Cardi; National Research Council, Institute of Biosciences and Bioresources, Portic//taly
Modification of potato mitochondrial DNA through mito-TALEN and targeted base editing

18:30-22:00 Social dinner - Botanical Garden

3rd PlantEd conference

Dusseldorf, Germany - September 5-7, 2022

Tuesday September 6, 2022

Session Chair - Katrijn Van Laere - Lecture Hall 6L

09:00-09:40

09:40-10:20
20:20-10:50

10:50-11:10
What can we do? Applications of Genome Editing
11:10-11:30

13:30-13:50

13:50-14:10
14:10-14:30

Keynote Rene Smulders; Wageningen University \& Research, Plant Breeding, Wageningen/The Netherlands Applications of new genomic techniques in plant breeding

Keynote Matin Qaim; Center for Development Research (ZEF), Bonn/Germany Possible socioeconomic implications of plant genome editing

Angelo Santino; Institute of Sciences of Food Production, Lecce/Italy CRISPR/Cas9 mediated genome editing to develop Vitamin D-biofortified tomatoes

Per Hofvander; Swedish University of Agricultural Sciences, Plant Breeding, Alnarp/Sweden
11:30-11:50 Trait development for unique starch quality in potato by multiallelic, multigene CRISPR-Cas9 mutagenesis

11:50-12:10 Musa Kavas; Ondokuz Mayıs University, Samsun/Turkiye
Application of genom-editing in tomato
Mahdi Morad Pour; Tallinn University of Technology, Tallinn/Estonia
12:10-12:30 DNA-Free Transcriptional Activation of Heat Stress-Responsive Genes in Red Cabbage using CRISPR/dCas9 Ribonucleoprotein Activators to Enhance Heat Tolerance

12:30-13:30 Lunch - Botanical Garden

Alexander Fendel; Thünen Institute of Forest Genetics, Grosshansdorf/Germany Improvement of drought stress tolerance in poplars (Populus) by modification of candidate genes

Jeny Jose; Centre for Agricultural Research, Martonvásár/Hungary
Harnessing S-gene candidates for conferring resistance against Ralstonia solanacearum in potato
Loredana Moffa; Research Centre for Viticulture and Enology, Conegliano/Italy New Plant Breeding Techniques to enhance grapevine sustainability

Kyoka Kuroiwa; INRAE Avignon, Avignon/France
14:30-14:50 An iterative gene editing strategy broadens elF4E1 genetic diversity in Solanum lycopersicum, triggering resistance to several potyvirus isolates
Allah Bakhsh; Centre of Excellence in Molecular Biology, Lahore/Pakistan
Addressing cold induced sweetening of potato through knock out of vacuolar invertase gene
15:10-15:40 Coffee break - Botanical Garden
15:40-16:25 Keynote Thomas Jacobs; VIB, University of Gent, Center for Plant Systems Biology, Gent/Belgium Systematic optimization and development of plant genome editing techniques

16:30-18:15 MC meeting

3rd PlantEd conference
Dusseldorf, Germany - September 5-7, 2022

Wednesday September 7, 2022

Session Chair - Götz Hensel - Lecture Hall 6L	

We appreciate the support of our sponsors:

CEPLAS
Cluster of Excellence on Plant Sciences

Abstracts
?
EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY

Poster 14

Ana Marjanović Jeromela ${ }^{1}$, Dušica Jovičić ${ }^{1}$, Ankica Kondić Špika ${ }^{1}$, Dragana Rajković ${ }^{1}$, Milka Vujaković ${ }^{2}$, Aleksandra Radanović ${ }^{1}$, Dragana Miladinović ${ }^{1}$
${ }^{1}$ Institute of Field and Vegetable Crops (IFVCNS), Novi Sad, Serbia
${ }^{2}$ Agriculture extension service, Novi Sad, Serbia

Potentials for Salt Tolerance Improvement in Rapeseed

Salt stress affects all phases of rapeseed growth and development, but seed germination and seedling growth are the most sensitive. In our previous studies, we have evaluated effect of salt stress on the germination process of rapeseed in controlled laboratory conditions. We tested eight rapeseed cultivars Banaćanka, Jasna, Kata, Zorica, Slavica, Anna, Ilia and Zlatna under salt stress (100, 150, 200 and $250 \mathrm{mmol} / \mathrm{L} \mathrm{NaCl}$. All tested cultivars had a certain level of tolerance to low NaCl treatments, while at higher concentrations significant damage was observed, which was reflected in the reduction of growth and the appearance of necrosis. Banaćanka and Zorica had the highest germination values in all salt stress levels, while Jasna and Zlatna varieties had the highest germination reduction. Between the tested genotypes, obvious differences were observed when analyzing the activity of antioxidant enzymes superoxide dismutase and guaiacol peroxidase (SOD, GPx), the amount of non - enzymatic antioxidants reduced glutathione (GSH) and the intensity of lipid peroxidation (LP), both in seedlings shoot and in the root. Induction of SOD activity by different concentrations of NaCl was observed in all examined cultivars. Tolerant varieties showed increased activity of antioxidant enzymes and in regard to this, higher SOD activity was found in cultivars Jasna and Kata. In all examined cultivars, there was a gradual increase in the intensity of LP with a higher concentration of NaCl . Cultivar Banaćanka showed the highest (237.21\%) increase at the highest salt stress level, while Kata showed the lowest (147.73\%), compared to the control.

So far, over 500 drought and/or high-salinity stress-inducible genes were identified in B. napus by using different approaches. Some of the rapeseed genotypes, which have been identified in our study as potential sources of salt and other abiotic stresses tolerance (Banaćanka, Anna, Zorica) are selected for further study of the role of stress-inducible genes and the detection of the most effective genes that would be of interest for targeted genome editing in order to improve salt and drought tolerance of commercial rapeseed varieties.

Acknowledgements: This work is done in the scope of the activities of Centre of Excellence for Innovations in Breeding of Climate-Resilient Crops - Climate Crops of Institute of Field and Vegetable Crops, as well as a part of the project supported by Ministry of Education, Science and Technological Development of Republic of Serbia, grant number 451-03-68/2022-14/ 200032, and COST Action CA18111.

