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Abstract 1 

With the aid of models used in artificial intelligence, a wide range of data can be processed 2 

quickly with high accuracy. The quality of rapeseed oil from 40 genotypes cultivated during 3 

four consecutive years was analysed. Two machine learning techniques (artificial neural 4 

network – ANN, and random forest regression – RFR) were applied for the modelling of fatty 5 

acids content (C16:0; C18:0; C18:1; C18:2; C18:3 and C22:1), α-tocopherol, γ-tocopherol and 6 

total tocopherols, according to the data of production year and winter rapeseed genotype. The 7 

developed models exerted high-quality anticipation features, showing high r2 during the 8 

training cycle. The best fit between the modelled and measured traits for ANN model was 9 

observed for erucic acid content. RFR modelling for all fatty acids was more effective than 10 

ANN model, with the highest precision for palmitic, stearic, and oleic fatty acids (r2>0.9). This 11 

study emphasized the possibility of using ANN and RFR models to model winter rapeseed 12 

quality traits. 13 

 14 

Keywords: Mathematical modelling, machine learning, rapeseed, quality traits, fatty acids, 15 

tocopherols 16 

 17 

1. Introduction 18 

Fatty acids and tocopherols are the main nutritive compounds of rapeseed (Brassica napus L.) 19 

oil. The composition of fatty acids within plant oil determines its quality and physicochemical 20 

properties. Rapeseed oil is the oleic type and often referred to as ideal in terms of omega-6 vs. 21 

omega-3 ratio (2:1). Rapeseed oil contains 50‒70% oleic, 17‒21% linoleic, and 7‒10% 22 

linolenic acid (Adjonu et al., 2019; Koprna et al., 2006). Although seed quality of rapeseed is 23 

determined by genotype, it is also a consequence of complex interactions that occur between 24 

plant and environment. Temperature affects the fatty acids content of rapeseed oil. In a study 25 
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by Schulte et al. (2013), it was found that the share of oleic acid in oil increased as temperature 26 

increased during seed filling, while the share of linoleic and linolenic acids decreased. Increased 27 

minimum daily temperature, especially after the end of flowering, during oil accumulation, 28 

evoked increased oleic acid content and consequentially decreased linoleic content (Baux et al., 29 

2013). Late sowing and drought reflect on lower oleic acid content in the rapeseed oil (Shirani 30 

Rad et al., 2014). Members of Brassicaceae family, especially rapeseed and brown mustard 31 

seeds (Brassica juncea (L.) Czern), are natural sources of erucic acid in which it is present in 32 

high amount (Vetter et al., 2020). Drought stress occurring in the late season of rapeseed 33 

cultivation leads to an enhanced amount of erucic acid (Gharechaei et al., 2019). Predominantly 34 

used technique for determination of fatty acids content in plant oils is gas chromatography, 35 

which is officially recommended by the American Oil Chemists' Society (AOCS).  36 

One of the goals in quality breeding of rapeseed is focused on improving oil quality through 37 

changes in the content of certain fatty acids. These are namely oleic and erucic acids. Breeding 38 

for the purpose of human consumption led to the creation of canola quality cultivars and hybrids 39 

whose oil has maximally 2% of erucic acid and less than 30 μmol of glucosinolates per gram 40 

of defatted meal (Opinion of the Scientific Panel on Contaminants in the Food Chain on a 41 

request from the European Commission on glucosinolates as undesirable substances in animal 42 

feed, 2008). Such a low concentration of erucic acid in modern rapeseed cultivars is relatively 43 

low for Brassicaceae species. 44 

Apart from fatty acids, the content and composition of tocopherols in rapeseed oil are important 45 

for its stability. Tocopherols and tocotrienols are monophenols, and represent forms of vitamin 46 

E. Alfa isoform of vitamin E is most potent and powerful regarding  biological activity. Vitamin 47 

E is an essential micronutrient for humans. Tocopherols, as important antioxidants, protect 48 

polyunsaturated fatty acids from lipid peroxidation (Lebold & Traber, 2014). The presence of 49 

these natural antioxidants in vegetable oils and processed products (margarine, salad dressings, 50 
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and mayonnaise) is important for the benefit of human health. There are several methods for 51 

determination of individual tocopherols in vegetable oils. Normal, or reverse phase high-52 

performance liquid chromatography (HPLC) is mostly used with fluorescence or ultraviolet-53 

visible detection (Bakre et al., 2015; Gruszka & Kruk, 2007). 54 

Many chemical components of the oil are strongly correlated. Therefore, modelling the 55 

chemical properties of rapeseed oil is essential to guide breeders towards on-time information 56 

about genotypes with the highest amount of certain desirable compounds to make timely 57 

decisions and quickly evaluate large-scale samples. Especially when it comes to erucic acid 58 

content in food-based products, the need for quality monitoring of rapeseed oil is evident.  59 

Within the last decade, machine learning has been successfully used in agriculture. Most 60 

literature points out the benefits of these technologies for crop yield modelling, detection of 61 

different crop conditions such as diseases and mineral insufficiency (Iniyan et al., 2020; 62 

Niedbała et al., 2019; Yu et al., 2020). Machine learning, as a nonlinear and nonparametric 63 

method, has higher efficiency over classical statistical methods in analysing data related to 64 

complex relationships in living organisms. Machine learning methods are prosperous for the 65 

analysis of crop quality and contribute to higher revenue, because they reduce the number of 66 

required analyses. The capability of modelling seed quality on specific farms/locations based 67 

on the information about genotypes, management practice and environmental conditions is 68 

challenging, but achievable task. Published literature on machine learning related to Brassica 69 

species mostly covers papers that refer to image analysis with the aid of different learning 70 

algorithms. Crop quality was the subject of only 3% of studies that are related to machine 71 

learning in agriculture (Benos et al., 2021).  72 

The classical machine learning models such as: artificial neural network (ANN), random forest 73 

regression (RFR), support vector machine (SVM), extreme learning machine (ELM), K-nearest 74 

neighbors (KNN) and decision tree (DT) are extensively used in modelling in various branches 75 
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of science. The SVM is widely used discriminant technique based on the statistical learning 76 

theory, well recognized for its strong generalization ability. The optimal network is obtained by 77 

exploring the balance among the complexity of the model and the training error (Ma et al., 78 

2022). The ELM designs a single-layer feedforward network by randomly generating the input 79 

weights and biases of the hidden layers (Wang et al., 2022).  80 

The vast variety of state-of-the-art machine learning techniques are suitable for sequence data  81 

like ensemble learning models, such as: XGBoost (Su et al., 2022) and LightGBM (Jawad et 82 

al., 2022) and CatBoost. XGBoost model exerts its advantages especially for high prediction 83 

accuracy and interpretability. LightGBM model enables large amounts of data and GPU 84 

training. The LightGBM models are proven to be more accurate and faster than XGBoost. Data 85 

fusion enables stronger forecasting accuracy, according to the integration of gradient boosting 86 

based categorical attributes supported by CatBoost algorithm (Dutta & Roy, 2022). 87 

In Imahara et al. (2006), modelling procedure was established to determine the optimal fatty 88 

acid composition of vegetable oil for biodiesel production. Campbell et al. (2021) used trait-89 

specific genomic relationship matrices to model fatty acids and lipid content in oat seed and 90 

reported advantages of this approach over conventional genomic prediction. In the experiment 91 

of Niedbała et al. (2020), ANN was developed with the aim to estimate ferulic acid 92 

concentration in wheat. Similar to our study, they also created a model on the basis of cultivar 93 

and weather data. Data on the fatty acids content in rapeseed oil can be used to estimate the 94 

oxidative stability of oil using ANN (Dehghani et al., 2012). Chemical composition, sensory 95 

properties, as well as verification of the authenticity and geographical origin of olive oil can be 96 

predicted with the means of ANN (Gonzalez-Fernandez et al., 2018).  97 

In recent study of Rajković et al. (2022), ANN and RFR models were used to estimate the seed 98 

yield, oil and protein yield, oil and protein content, and 1000 seed weight, based on the year of 99 

production and genotype. The exploration of the ANN and RFR models in this new article was 100 
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with the goal to model the fatty acids and tocopherols content, according to data of production 101 

year and rapeseed genotype. Therefore, this article should be considered as a second part of the 102 

same study. To the best of the author`s knowledge, no previous studies have addressed the 103 

modelling of fatty acids and tocopherols content in rapeseed using a machine learning approach. 104 

The main objective of this investigation was to explore the potential of forecasting the fatty 105 

acids (C16:0; C18:0; C18:1; C18:2; C18:3 and C22:1) and tocopherols content (α-tocopherol, 106 

γ-tocopherol and total tocopherols), according to data of production year and rapeseed genotype 107 

(introduced as categorical variables), developing two machine learning methods, such as 108 

artificial neural network model (ANN) and random forest regression (RFR) models.  109 

 110 

2. Materials and methods 111 

 112 

2.1.Rapeseed samples  113 

Cold-pressed rapeseed oil was obtained from 40 winter rapeseed genotypes. Three genotypes 114 

were experimental hybrids (NS-H-R-1,  NS-H-R-2, NS-H-R-3), 37 were lines from which 14 115 

are registered cultivars (Banaćanka, Slavica, Zlatna, Branka, Express, Nevena, Valesca, Ilia, 116 

Kata, Nena, Svetlana, Jasna, Zorica and Jelena) and 21 are experimental lines (NS-L-74, NS-117 

L-7, NS-L-31, NS-L-126, NS-L-33, NS-L-128, NS-L-101, NS-L-102, NS-L-134, NS-L-32, 118 

NS-L-136, NS-L-137, NS-L-138, NS-L-251, NS-L-210, NS-L-44, NS-L-45, NS-L-46, NS-L-119 

47, Forward and Maidan). The remaining two genotypes were improved lines derived from the 120 

existing variety Valesca (Valeska tamna and Valeska svetla). The genotypes Valesca, Valeska 121 

tamna and Valeska svetla originate from Sweden, Express is from Germany, and the remaining 122 

genotypes are from Serbia. Upon pressing on the hydraulic oil press machine, oil samples were 123 

immediately stored in the dark at -40 °C for one to four weeks until the moment of analysis.   124 

 125 
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2.2.Trial design 126 

A field trial was set up during four vegetation seasons in the period 2014-2018 as a randomized 127 

complete block design on location Rimski šančevi (45°19'53.7" N 19°50'12.6" E), Vojvodina 128 

province, Serbia. Field trial consisted of 40 rapeseed genotypes and was set up in three 129 

replicates with a plant protection (rapeseed cultivar Slavica was sown) around the whole trial 130 

to reduce border effect.  Dimension of experimental plot was 6 m2 (4 m × 1.5 m). Sowing was 131 

performed with manual single-row planter at 2-3 cm depth. Sowing and standard cultivation 132 

practices throughout the years were applied at the optimum time. Each year, NPK fertilizer 133 

(nitrogen, phosphorus, potassium) was applied prior to sowing (Table 1). Plant protection was 134 

performed in accordance with the pathogen and pest infestation. Climate variables such as 135 

average daily temperatures, precipitations and sunhine hours were obtained from the Republic 136 

hydrometeorological service of Serbia (Fig. 1a and 1b) and Ogimet weather service (Fig. 1c) 137 

for meteo station ``Rimski šančevi``.  138 

 139 

Fig. 1. 140 

 141 

Table 1. 142 

 143 

2.3. Weather conditions  144 

During the winter season of 2014/15, precipitation levels were higher than the multi-year 145 

average (1964-2013), resulting in moisture reserves in the soil's deeper layers. The second half 146 

of April, when rapeseed was in flowering phase, was quite dry, which was unfavorable for the 147 

plant development. The spring was warm, with three times more precipitations in May as 148 

compared to the long-term average. The winter of 2015/16 was warmer than the long-term 149 
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mean. Days with the least amount of sunshine were observed during the winter months, as 150 

expected. In December 2015, even there was decrease in sunshine hours, amount of 151 

precipitations was much lower than average. Average daily temperatures at the end of January 152 

and in February were above 5℃, which influenced the earlier start of vegetation. Average 153 

temperatures for this period of the year with a higher amount of precipitation were recorded 154 

during spring. Around two times more precipitations than the multi-year average rainfall 155 

occurred in June and extended the seed filling stage. In the autumn of the production year 156 

2016/17, there was a lot of precipitations, while the winter was mostly dry, with the average 157 

precipitation below the multi-year mean level. A warmer production year than usual was 158 

observed during 2017/18. Decrease in sunhine hours in March may be reflected in a decrease 159 

of photosynthesis efficiency. April and May were warmer than average, with 8 and 9.5 average 160 

month sun hours respectively, resulting in faster rapeseed growth. 161 

 162 

2.4.Fatty acid composition 163 

Fatty acids were methylated and chemically converted into their volatile esters in 164 

transesterification reaction. Fatty acid methyl esters (FAME) were prepared according to the 165 

method by Kravić et al. (2010) with some modifications. Oil of rapeseed (170 µL) and n-hexane 166 

(2.4 mL) were added to a test tube with a stopper. Then, 0.6 mL of 2 moL/dm3 KOH in methanol 167 

was added and shaken for 20 seconds. Following this, the closed test tube was placed in a heated 168 

water bath at 70˚C for one minute, after which it was removed from the water bath and shaken 169 

for 20 seconds. Afterwards, 1.2 mL of 1 moL/dm3 HCl in methanol was added to the tube and 170 

left until separated into two phases. After phase separation, 1 µL of fatty methyl esters in n-171 

hexane (upper phase) was injected into the gas chromatograph with flame ionizing detector 172 

(GC-FID). The composition and relative content of individual fatty acids were determined with 173 

a gas chromatograph (Konik HRGC 4000) equipped with a fused silica capillary column 174 
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(Supelco Omegawax® 250, 30 m × 0.25 mm ID, film thickness 0.25 μm), and poly(ethylene 175 

glycol) stationary phase. An oven temperature of 150 °C was used, then the temperature was 176 

raised to 250 °C at a rate of 12 °C/min for 8 minutes. The injector and detector temperatures 177 

were 250 ℃. Flow rate of helium (carrier gas) was 1 mL/min with a split ratio of 1:70. Fatty 178 

acids were identified by comparing their relative retention time in analysed samples with 179 

retention time of pure commercial standard fatty acid methyl esters solution (multistandard 180 

from Supelco, Cat. No 07256-AMP, 07756-1AMP) under the same conditions. Data processing 181 

was performed with Konikrom plus software (DataApex, ver. 2.3.0.195). 182 

 183 

2.5.Tocopherol composition 184 

Tocopherol composition was determined by HPLC chromatograph with a fluorescent detector 185 

according to Lazzez et al. (2008) method with slight modification. Rapeseed oils (300 µL) and 186 

n-hexane were added to a 2 mL volumetric flask with stirring. Aliquot (1 mL) of this solution 187 

was filtered into the reaction vial for HPLC analysis through a regenerated cellulose filter (0.22 188 

µm). Sykam HPLC system normal-phase liquid chromatography was used to separate 189 

tocopherols. Tocopherols from oil were separated on a Nucleosil 100-5 NH 2 amino column 190 

(Machery Nagel, 250 × 4.6 mm, 5 μm particle size, 100 Å pore size). As a mobile phase, a 191 

mixture of n-hexane/ethyl acetate (70:30, v/v) with a flow rate of 1 mL/min was used. The 192 

temperature of the detector was 30 ℃. The eluent was monitored using the fluorescence detector 193 

set at excitation wavelength 280 nm and emission wavelength 340 nm. Tocopherols were 194 

identified and quantified by comparing retention times of samples with retention times of 195 

commercial standards in hexane (dl α-tocopherol [Cat-No.4-7783], rac β-tocopherol [Cat.No. 196 

46401-U], γ- [Cat.No. 47784] and δ-tocopherol [Cat.No. 4-7785], manufactured by Sigma-197 

Aldrich). Total tocopherols are represented as a sum of alpha- and gamma-tocopherols. Clarity 198 
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Chromatography Station (DataApex, ver. 7.4.1.88) software was used to process the obtained 199 

data.  200 

 201 

2.6.ANN modelling  202 

In this investigation, the ANN modelling technique was chosen for modelling purposes, due to 203 

its proven efficiency in approximating nonlinear functions (Agatov, 2019; Anitescu et al., 2019; 204 

Basir et al., 2021; Kleijnen, 2018; Kujawa & Niedbała, 2021; Samaniego et al., 2020). The 205 

ANN model building structure was based on the multi-layer perceptron model (MLP) scheme, 206 

comprising of three layers (input, hidden, and output) to forecast the fatty acids content (C16:0; 207 

C18:0; C18:1; C18:2; C18:3 and C22:1) and tocopherols content (α-tocopherol, γ-tocopherol 208 

and total tocopherols), relied on the year of production and rapeseed genotype.  209 

The MLP-formed ANN model could be presented using matrix notation, with weight and bias 210 

coefficients associated with the hidden and output layer written in matrices W1, B1, W2 and B2, 211 

with Y as the output variables matrix, f1 and f2 as activation functions in the hidden and output 212 

layers, and with X as the matrix of input variables (Kollo & von Rosen, 2005): 213 

    1 2 2 1 1 2( ( ) )    Y f W f W X B B     (1) 214 

Prior to the calculation, the experimentally obtained database which consisted of measured 215 

input and output parameters was transformed using a min-max normalization scheme. This 216 

database was randomly divided into training and testing groups (70% and 30%, respectively). 217 

Throughout the learning procedure, ANN inputs were supplied with a training set of parameters, 218 

in order to establish the optimal number of neurons in the hidden layer, to estimate the weights 219 

and bias coefficients and non-linear activation functions for every neuron in the ANN model. 220 

The Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm was employed during the iterative 221 

process of weights and biases coefficients calculation (Berrueta et al., 2007; Doumpos & 222 
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Zopounidis, 2011). A sequence of distinct MLP-formed ANN layouts were investigated, 223 

altering the number of hidden neurons (between 5 to 20) introducing random initial values of 224 

weights and biases coefficients. The learning procedure of the network was repeated 100,000 225 

times (Pezo et al., 2013).  226 

  227 

2.6.1. Global sensitivity analysis 228 

The Yoon's method for global sensitivity analysis was employed to estimate the relative 229 

influence of the inputs on the output variables, enumerating the weighting coefficients within 230 

the ANN model (Yoon et al., 1993): 231 

0

0 0

( )

(%) 100%

( )

n

ik kj

k
ij m n

ik kj

i k

w w

RI

w w



 



 






    (2) 232 

where the parameters abbreviations were: w – weight coefficient in the ANN model, i – input 233 

variable, j - output variable, k - hidden neuron, n - number of hidden neurons, m - number of 234 

inputs.  235 

 236 

2.7.RFR modelling 237 

Random forest regression (RFR) modelling is a widely accepted machine learning 238 

mathematical tool developed according to the decision trees principle, with an intention of 239 

modelling the output variables corresponding to the inputs (Breiman, 2001). The RFR 240 

modelling is employed to foresee the structure of each individual tree, according to developed 241 

decision trees computed utilizing the training dataset (Rasaei & Bogaert, 2019). In the course 242 

of RFR modelling, a huge number of decision trees were grown and tested, and a single tree 243 

was modelled based on the unique bootstrap sample within a training dataset (Khanal et al., 244 

2018). The fatty acids content (C16:0; C18:0; C18:1; C18:2; C18:3 and C22:1) and tocopherols 245 
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content (α-tocopherol, γ-tocopherol and total tocopherols) were modelled, according to the year 246 

of production and genotype. The same sets of training and testing data were used for ANN and 247 

RFR modelling. In this investigation, the bootstrap function was utilized to randomly divide the 248 

dataset into two uniform subsets (training and test) which outlined 70% and 30% of the entire 249 

data (Zhang et al., 2021). Input sample dataset was used for designing new sub-samples, and 250 

multiple trees were associated with the RFR structure to fit thus obtained sub-samples. 251 

Throughout the training sequence, the RFR model averaged the outcomes of the grown trees, 252 

with the intention of diminishing the error of anticipation (Yang et al., 2021). In the course of 253 

RFR calculation, the count of trees was adjusted to 100, 200, 300, 400, 500, and 10000, whereas 254 

the random training data proportion count was set to 70% and the test sample proportion was 255 

30%.   256 

 257 

2.8.The accuracy of the model 258 

The numerical confirmation of the obtained ANN and RFR models was performed using 259 

statistical tests, such as coefficient of determination (r2), reduced chi-square (χ2), mean bias 260 

error (MBE), root mean square error (RMSE), mean percentage error (MPE), sum of squared 261 

errors (SSE) and average absolute relative deviation (AARD). These commonly used 262 

parameters were calculated as in Puntarić et al., (2022): 263 

2

exp, ,
2 1

( )
N

i pre i

i

x x

N n
 







,      (3)264 

1 2

2

, exp,

1

1
( )

N

pre i i

i

RMSE x x
N 

 
   
 

 ,    (4) 265 
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1
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N
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i

MBE x x
N 

   ,     (5) 266 
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( )

N
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x x
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N x


  ,    (6) 267 
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 2

, exp,

1

( )
N

pre i i

i

SSE x x


  ,      (7) 268 

exp, ,

1 exp,

1 N
i pre i

i i

x x
AARD

N x


  ,     (8) 269 

where xexp,i were experimental values and xpre,i were the model predicted values, N and n are the 270 

number of observations and constants, accordingly. 271 

 272 

2.9.Statistical analysis  273 

For comparison of the mean values of individual fatty acids and tocopherols concentrations in 274 

different oil samples, analysis of variance (ANOVA) with the Duncan’s post-hoc test was used. 275 

The correlation analysis of fatty acids and tocopherols was performed using R software v.4.0.3 276 

(64-bit version). Data processing for ANN and RFR modelling was performed with the StatSoft 277 

Statistica, ver. 10.0, Palo Alto, CA, USA. 278 

 279 

3. Results  280 

 281 

3.1.Fatty acids and tocopherols content 282 

Following fatty acids were identified by gas chromatography in rapeseed oil samples: myristic 283 

(C14:0), palmitic (C16:0), stearic (C18:0), oleic (C18:1), linoleic (C18:2), linolenic (C18:3), 284 

arachidic (C20:0), arachidonic (C20:4), behenic (C22:0), erucic and lignoceric acid (C24:0). 285 

Due to the small amount of myristic (C14:0), arachidic, arachidonic, behenic and lignoceric 286 

acids, which individually accounted for less than 1% of total fatty acids, their content is not 287 

presented. In all analysed samples, oleic acid was the dominant fatty acid with an average of 288 

58.64% (Fig. 2, Suplementary Table 1). Then follows linoleic (average 20.12%) and linolenic 289 
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acid (average 11.48%), which was around two times less represented in oil than linoleic. Among 290 

saturated fatty acids, palmitic acid was present in the highest amount.  291 

 292 

Fig. 2 293 

 294 

Genotypic value for C18:1 of analysed genotypes in the period 2015‒2018 varied from 295 

37.59±0.26% (NS-L-102) to 61.90±0.22% (NS-L-7). Kata, Jasna, NS-L-31, NS-L-74, NS-L-296 

210, NS-L-45 and Zlatna also had a high four-year average of C18:1 of over 61%. The mean 297 

C18:1 value of 58.64% indicates that rapeseed oil is of high quality. Each analysed year, 298 

including the four-year mean, line NS-L-102 had the lowest C18:1 content of 37.59±0.26%. A 299 

low four-year mean of C18:1, below 50%, was also determined in Valeska tamna. Cultivar 300 

Slavica, the standard for DUS (distinctness, uniformity, stability) and VCU (value for 301 

cultivation and use) tests in Serbia, had a higher oleic acid content (59.07±0.24%) than the 302 

grand mean (58.64%). Between the analysed years, average values of C18:1 varied the most in 303 

the line NS-L-251 (38.68±0.28 ‒ 62.10±0.27%). The biggest deviation in the variation of this 304 

line was in 2018, when the share of C18:1 in the total mixture of fatty acids was about 20% 305 

lower compared to its content in other analysed years. The smallest variation in C18:1 content 306 

between years was observed in lines NS-L-136, NS-L-32, NS-L-138 and NS-L-210. In relation 307 

to linoleic acid content, the average value during the four-year period was 20.12%. NS-L-102 308 

had the lowest mean C18:2 of 17.08±0.22%, while Jasna had the lowest content of C18:3 309 

10.49±0.27%. Valeska tamna, Valeska svetla, Nevena, Nena, NS-L-102 and NS-L-251 had 310 

mean erucic acid content above the maximum threshold (2%) value allowed for canola quality 311 

of the oil. Content of C22:1 in each year, including the four-year average, was the highest in 312 

line NS-L-102, 14.13±0.28%. 313 
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Amount of total tocopherols in rapeseed genotypes ranged from 397.06±16.25 mg/kg (Kata) to 314 

514.18±11.84 mg/kg (Valesca). Gamma-tocopherols content varied from 249.95 to 325.42 315 

mg/kg (Valesca tamna and Valesca, respectively), while alpha-tocopherols represented 316 

135.93±8.37 – 218.51±8.51 mg/kg (Kata and Valeska tamna, respectively) [Fig. 3, 317 

Supplementary Table 1]. 318 

 319 

Fig. 3 320 

 321 

3.1.1. Correlation analysis and heat map of data 322 

The results of the correlation analysis are presented in Fig. 4a. The diameter of the circle and 323 

the circle’s colour are influenced by the correlation coefficients; the blue colour significates a 324 

positive correlation, while the red colour represents the negative correlation. The circle’s size 325 

significates the absolute value of the obtained correlation coefficient. The highest positive 326 

correlations were found between γ-tocopherol and total tocopherol content (r = 0.88; p≤0.05) 327 

and α-tocopherol and total tocopherol content (r = 0.74; p≤0.05). The strongest negative 328 

correlation was observed between C18:1 and C22:1 content (r=-0.92; p≤0.05).  329 

The heat map of fatty acids content and tocopherols data is presented in Fig. 4b. The first 330 

hierarchical cluster contained C22:1, C:16:0 and C18:0, while other cluster comprised C18:1, 331 

C18:2, C18:3 and tocopherols. The order of the variables were re-ordered according to the 332 

hierarchical clustering result, putting similar variables close to each other. The colour scheme 333 

was applied for the visualization of the data and to simplify the recognition of variable’s 334 

belonging to a specific cluster. 335 

 336 

Fig. 4. 337 

 338 
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3.2.ANN model 339 

The developed optimal neural network model showed adequate generalization capabilities for 340 

the modelling of experimental results: fatty acids profile (C16:0; C18:0; C18:1; C18:2; C18:3 341 

and C22:1), α-tocopherol, γ-tocopherol, and total tocopherols, according to the year of 342 

production and genotype. The optimum number of neurons in the hidden layer of ANN model 343 

was 10 (network MLP 44-10-9) (Table 2), while the r2 values were: 0.813; 0.763; 0.906; 0.866; 344 

0.828; 0.958; 0.854; 0.860 and 0.884, accordingly, during the training cycle for output 345 

variables. The obtained r2 values during the testing cycle were: 0.712; 0.587; 0.860; 0.718; 346 

0.772; 0.946; 0.655; 0.641 and 0.639 for C16:0; C18:0; C18:1; C18:2; C18:3, C22:1, α-347 

tocopherol, γ-tocopherol, and total tocopherols contents modelling.  348 

 349 

Table 2 350 

 351 

The developed ANN model for fatty acids profile, α-tocopherol, γ-tocopherol and total 352 

tocopherols modelling was consisted of 117 weights-bias coefficients showing the high 353 

nonlinearity of the system (Chattopadhyay & Rangarajan, 2014; Montgomery, 1984). 354 

Supplementary Table 2 presents the elements of matrix W1 and vector B1, while Supplementary 355 

Table 3 presents the elements of matrix W2 and vector B2, which were derived during the ANN 356 

model development, using Equation 1. The goodness of fit between experimental and model-357 

calculated results, were shown in Table 3. 358 

 359 

Table 3 360 

 361 

The results obtained from database were fitted to the developed ANN model. reduced chi-362 

square (χ2), root mean square error (RMSE), mean bias error (MBE), mean percentage error 363 
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(MPE), sum of squared errors (SSE), coefficient of determination (r2) and average absolute 364 

relative deviation (AARD) were calculated statistical parameters applied for determination of 365 

fitting quality between database and the developed model. The particularly high values of r2 366 

and low χ2, RMSE, MBE, MPE,SSE and AARD suggested adequate fit (Tables 3 and 4). The 367 

ANN model showed better fit to C22:1, α-tocopherol, γ-tocopherol and total tocopherols 368 

content data, according to relatively low χ2, RMSE, MBE, MPE, SSE and AARD, as well as 369 

the high r2 values (Table 3). 370 

The ANN models satisfactorily modelled experimental variables for various process variables.    371 

For the ANN model, the model calculated fatty acids profile, α-tocopherol, γ-tocopherol and 372 

total tocopherols content were not too close to the experimental values in most cases, in terms 373 

of r2 values, while the sum of squares (SOS) values acquired using the ANN model was of the 374 

same order of magnitude as experimental errors for outputs mentioned in the literature 375 

(Doumpos & Zopounidis, 2011; Kollo & von Rosen, 2005). 376 

The efficiency of the ANN model in modelling fatty acids profile, α-tocopherol, γ-tocopherol, 377 

and total tocopherol content is graphically illustrated by scatter plots (Fig. 5). In most scatter 378 

plots, data are distributed with large dispersion, indicating low prediction accuracy.  379 

 380 

Fig. 5 381 

 382 

The subsampling testing was included in this investigation using Statistica’s software routine, 383 

applied in the same MLP environment. More than 2000 subsampling was tested, and the results 384 

of the training and testing cycles were presented in Fig. 6. 385 

 386 

Fig. 6 387 

  388 
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The training curve presented in Fig. 6 showed that the loss of the model follows a descending 389 

trend, for training and testing curves. The gap between these curves is referred as the 390 

“generalization gap”. A plot of learning curves shows a good fit, knowing that the training loss 391 

decreases to a point of stability, and that the plot of validation loss decreases to a point of 392 

stability and has a small gap with the training loss. 393 

 394 

3.2.1. Global sensitivity 395 

Within this chapter, the investigation of factor's impacts (such as production year and winter 396 

rapeseed genotype) on the fatty acids content (C16:0; C18:0; C18:1; C18:2; C18:3 and C22:1) 397 

and α-tocopherol, γ-tocopherol and total tocopherols content were performed, according to the 398 

results of the developed ANN model. As illustrated in Fig. 7, most intensive positive influences 399 

for the C16:0 content were observed for: genotype 3 [NS-H-R 3] (+7.39%), genotype 5 400 

[Slavica] (+6.59%) and year 2018 (6.37%), while the most prominent negative influence was 401 

observed for genotype 34 [NS-L-44]  (-7.39%). The most intensive positive impact for the 402 

C18:0 content was observed for year 2018 (8.62%) and for genotype 26 [NS-L-102] (6.07%), 403 

whilst the strongest negative influence was noticed for genotype 35 [NS-L-45] (-5.32%). The 404 

strongest negative influence for the C18:1 content was recorded for genotype 26 (-16.23%), 405 

while the strongest positive influence was observed for genotype 8 [Zlatna] (+6.75%). The 406 

strongest negative influence for the C18:2 content was also noticed for genotype 26 (-9.79%), 407 

while the strongest positive influence was observed for genotype 30 [NS-L-137]  (+5.59%). 408 

The strongest negative influence for the C18:3 content was also noticed for genotype 6 [Valeska 409 

tamna] (-8.75%) and genotype 16 [NS-Kata]  (-8.43%), while the strongest positive influence 410 

was also observed for genotype 30 (+5.77%). The strongest positive influence for the C22:1 411 

content was noticed for genotype 26 (+16.54%). 412 
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The strongest negative influence for the α-tocopherol content was noticed for genotype 16 (-413 

5.82%) and genotype 20 [NS-L-33]  (-5.23%), while the strongest positive influence was 414 

observed for genotype 6 (+8.54%), genotype 14 [Valesca] (+7.86%) and genotype 28 [NS-L-415 

32] (+7.34%), during year 2015 (+4.64%). The strongest negative influence for the γ-tocopherol 416 

content was noticed for genotype 6 (-9.30%) and genotype 16 (-7.74%), while the strongest 417 

positive influence was observed for genotype 36 [NS-L-46] (+6.31%)%), during year 2015 418 

(+6.34%). The strongest negative influence for the γ-tocopherol content was noticed for 419 

genotype 16 (-8.58%), while the strongest positive influence was also observed for genotype 420 

14 (+5.99%), genotype 22 [Svetlana] (+5.12%), genotype 28 (+5.48%) and genotype 36 421 

(+5.03%), during year 2015 (+6.99%). 422 

 423 

Fig. 7 424 

 425 

3.3.RFR model 426 

The developed optimal random forest models demonstrated slight better modelling capabilities 427 

of the fatty acids and tocopherols, according to the year of production and genotype, which 428 

could be realised by Table 3 and Table 4. The number of trees for RFR models were: 920, 1000, 429 

1000, 1000, 1000, 1000, 120, 760 and 1000, respectively to acquire the highest values of r2 430 

(throughout the training cycle r2 for output variables were: 0.989; 0.989; 0.986; 0.807; 0.823; 431 

0.707; 0.631; 0.671 and 0.654, respectively), Table 4. 432 

 433 

Table 4 434 

 435 

The potential of the RFR model to predict fatty acids profile (C16:0; C18:0; C18:1; C18:2; 436 

C18:3 and C22:1), α-tocopherol, γ-tocopherol and total tocopherols is shown in Fig. 8. 437 
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 438 

Fig. 8 439 

 440 

4. Discussion  441 

 442 

4.1.Rapeseed seed quality 443 

Rapeseed oil is a source of essential fatty acids, linoleic (omega-6) and alpha-linolenic acid 444 

(omega-3), which the human body cannot create, but need to be ingested through food. The 445 

range of oleic and palmitic fatty acids in rapeseed and canola quality seed in Matthaus et al. 446 

(2016) was similar to our results. The average content of C18:1 in cultivar Express was around 447 

4% lower compared to the values of the same cultivar grown in the region of Southeast Anatolia 448 

(Turkey) (Ozturk et al., 2019). Different environmental conditions affect plant growth and 449 

development and reflect on seed quality, mainly in terms of oil and fatty acid content.  450 

The main source of vitamin E in the human diet are vegetable oils, which contain 200‒1,000 451 

mg of tocopherols per kilogram of oil (Grilo et al., 2014). Similar to the results of other authors 452 

(Matthaus et al., 2016; Siger et al., 2015; Wang et al., 2012), alpha- and gamma-tocopherols 453 

were dominant forms of tocopherols in the analysed oil samples. In Grilo et al. (2014), the 454 

average concentration of gamma- and alpha-tocopherols in Brazilian canola samples had 455 

similar values 122 mg/kg, and 120 mg/kg respectively. On the other hand, Matthaus et al. 456 

(2016) determined lower alpha- (13-40%) and gamma-tocopherol content (34-51%). The 457 

authors have also detected beta-tocopherol in traces and a small amount of delta-tocopherol. 458 

 459 

4.2.Mathematical modelling 460 

Determination of fatty acids and tocopherol content in the traditional way by chromatography 461 

is time-consuming and expensive for a large number of samples as is the case in most breeding 462 
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programmes. Apart from non-destructive, indirect methods, the use of accurate modelling 463 

statistics can significantly enhance this process and provide reliable results. In study of Niedbała 464 

and Piekutowska (2018), ANN model with low mean absolute percentage error of 2.81% was 465 

built for the quality prediction of potato tuber based on meteorological and fertilizer data. 466 

Aćimović et al. (2022) developed simple regression model based on weather data (temperature 467 

and precipitations). They succeeded in forecasting the content of active compounds and 468 

hydrolate composition in Lavandula essential oil. Random forest regression is also used as 469 

modelling tool for the determination of water quality (Islam Khan et al., 2021). Recently, 470 

Rajković et al. (2022) used year of production and genotype data as inputs for RFR and ANN 471 

models to model the seed yield, oil and protein yield, oil and protein content, and 1000 seed 472 

weight in rapeseed. In this study, the RFR model had a slightly better modelling abilities with 473 

high values of coefficient of determination in comparison with ANN. Regarding quality traits, 474 

ANN model had higher accuracy in modelling oil and protein content (Rajković et al., 2022) 475 

than fatty acids and tocopherols in this research. 476 

Both tested models in this study have the potential to be applied to other field crops to determine 477 

their seed quality, still RFR model gave slightly superior modelling quality. The best fit of 478 

modelled to measured traits in obtained ANN model was observed for C22:1 content (r2 = 479 

0.952), while the RFR model gave higher r2 values, the best fit was for C16:0 and C18:0 (r2 = 480 

0.989) and C18:1 content (r2 = 0.986). The coefficients of determination for erucic acid content 481 

were 0.925 for ANN model, and 0.707 for RFR model. The "goodness of fit" tests for the 482 

developed ANN and RFR models also indicate that the RFR model is more favorable in 483 

modelling fatty acids (C16:0; C18:0; C18:1; and C18:3), while tocopherols content (α-, γ- 484 

and total-tocopherols) was better modelled using ANN model. 485 

Proposed models fit in this background as non-destructive, cost-effective, and environment-486 

friendly. For the best results, it is crucial to train the network with adequate high-quality input 487 



21 

 

data. The modelling of not only fatty acids and tocopherols but also glucosinolates, phenols, 488 

and other quality traits can be improved with more supporting input data from the field, e.g., 489 

cultivation practice, soil properties, and genotype such as pedigree information, presence of 490 

specific genes, etc. 491 

 492 

5. Conclusion 493 

 494 

Apart from yield and oil content, fatty acids and tocopherol content are very important 495 

characteristics of rapeseed seed quality. Results of present study indicated strong negative 496 

correlation between oleic and erucic acids.  This study is the first report of modelling fatty acids 497 

and tocopherols of rapeseed oil with the aid of ANN and RFR. Accomplished results are 498 

encouraging as the concept of modelling seed quality based on environmental and cultivar data 499 

are proved to be effective. Impact of genotype and year on each fatty acid and tocopherol 500 

component was assessed in sensitivity analysis. The results of this study disclose that the fatty 501 

acids (C16:0; C18:0; C18:1; C18:2; C18:3 and C22:1) and tocopherols content (α-, γ- and total-502 

tocopherols) can be modelled, based on the year of production and genotype, according to 503 

relatively low χ2, RMSE, MBE, MPE, SSE and AARD, as well as the high r2 values. We 504 

demonstrated that the artificial neural network and random forest models are adequate for the 505 

modelling of output variables, yet the modelling with RFR model provides slightly better 506 

performance. Proposed models can provide relevant results and reduce the costs of standard 507 

chromatographic analysis.  508 

 509 

Acknowledgments 510 

 511 



22 

 

This work was carried out as a part of the activities of the Centre of Excellence for Innovations 512 

in Breeding of Climate Resilient Crops–Climate Crops, Institute of Field and Vegetable Crops, 513 

Novi Sad, Serbia. 514 

This research was supported by the Ministry of Education, Science and Technological 515 

Development of the Republic of Serbia [grant numbers 451-03-68/2022-14/ 200032, 451-03-516 

9/2021-14/200051, and 451-03-9/2021-14/200134]. 517 

 518 

References 519 

 520 

Aćimović, M., Lončar, B., Stanković Jeremić, J., Cvetković, M., Pezo, L., Pezo, M., 521 

Todosijević, M., Tešević, V. (2022). Weather Conditions Influence on Lavandin Essential 522 

Oil and Hydrolate Quality. Horticulturae, 8(4), 281. 523 

https://doi.org/10.3390/horticulturae8040281 524 

Adjonu, R., Zhou, Z., Prenzler, P. D., Ayton, J., Blanchard, C. L. (2019). Different Processing 525 

Practices and the Frying Life of Refined Canola Oil. Foods, 8(11), 527. 526 

https://doi.org/10.3390/foods8110527 527 

Agatov, I. (2019). Artificial Neural Networks (ANNs) as a Novel Modeling Technique in 528 

Tribology, Frontiers of Mechanical Engineering, 5, 30. 529 

https://doi.org/10.3389/fmech.2019.00030  530 

Anitescu, C., Atroshchenko, E., Alajlan, N., Rabczuk, T. (2019). Artificial Neural Network 531 

Methods for the Solution of Second Order Boundary Value Problems. Computers, 532 

Materials & Continua, 59(1), 345-359. https://doi.org/10.32604/cmc.2019.06641. 533 

AOCS Official Methods Ce 1–62, Fatty Acid Composition by Gas Chromatography. American 534 

Oil Chemists’ Society, IL, USA  535 

https://doi.org/10.3390/horticulturae8040281
https://doi.org/10.3390/foods8110527
https://doi.org/10.3389/fmech.2019.00030
https://doi.org/10.32604/cmc.2019.06641


23 

 

Bakre, S. M., Gadmale, D. K., Toche, R. B., Gaikwad, V. B. (2015). Rapid determination of 536 

alpha tocopherol in olive oil adulterated with sunflower oil by reversed phase high-537 

performance liquid chromatography. Journal of Food Science and Technology, 52(5), 538 

3093-8. doi: 10.1007/s13197-014-1309-7. 539 

Basir, M. S., Chowdhury, M., Islam, M. N., Ashik-E-Rabbania, M. (2021). Artificial neural 540 

network model in predicting yield of mechanically transplanted rice from transplanting 541 

parameters in Bangladesh, Journal of Agriculture and Food Research, 5, 100186. 542 

https://doi.org/10.1016/j.jafr.2021.100186  543 

Baux, A., Colbach, N., Allirand, J. M., Jullien, A., Ney, B., Pellet, D. (2013). Insights into 544 

temperature effects on the fatty acid composition of oilseed rape varieties. European 545 

Journal of Agronomy, 49, 12–19. https://doi.org/10.1016/j.eja.2013.03.001 546 

Benos, L., Tagarakis, A. C., Dolias, G., Berruto, R., Kateris, D., Bochtis, D. (2021). Machine 547 

Learning in Agriculture: A Comprehensive Updated Review. Sensors, 21(11), 3758. 548 

https://doi.org/10.3390/s21113758 549 

Berrueta, L. A., Alonso-Salces, R. M., Héberger, K. (2007). Supervised pattern recognition in 550 

food analysis. Journal of Chromatography A, 1158(1–2), 196-214. 551 

https://doi.org/10.1016/j.chroma.2007.05.024  552 

Breiman, L. (2001). Random forests. Machine Learning, 45, 5–32. 553 

https://doi.org/10.1023/A:1010933404324  554 

Campbell, M. T., Hu, H., Yeats, T. H., Brzozowski, L. J., Caffe-Treml, M., Gutiérrez, L., Smith, 555 

K.P., Sorrells, M. E., Gore, M. A., Jannink, J.-L. (2021). Improving Genomic Prediction 556 

for Seed Quality Traits in Oat (Avena sativa L.) Using Trait-Specific Relationship 557 

Matrices. Frontiers in Genetics, 12, 643733. https://doi.org/10.3389/fgene.2021.643733 558 

https://doi.org/10.1016/j.jafr.2021.100186
https://doi.org/10.1016/j.eja.2013.03.001
https://doi.org/10.3390/s21113758
https://doi.org/10.1016/j.chroma.2007.05.024
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.3389/fgene.2021.643733


24 

 

Chattopadhyay, P. B., & Rangarajan, R. (2014). Application of ANN in sketching spatial 559 

nonlinearity of unconfined aquifer in agricultural basin. Agricultural Water Management, 560 

133, 81-91. https://doi.org/10.1016/j.agwat.2013.11.007  561 

Dehghani, A. A., Mohammadi, Z. B., Maghsoudlou, Y., Mahoonak, A. S. (2012). Intelligent 562 

Estimation of the Canola Oil Stability Using Artificial Neural Networks. Food and 563 

Bioprocess Technology, 5, 533–540. https://doi.org/10.1007/s11947-009-0314-8 564 

Doumpos, M., & Zopounidis, C. (2011). Preference disaggregation and statistical learning for 565 

multicriteria decision support: A review. European Journal of Operational Research, 566 

209(3), 203-214. https://doi.org/10.1016/j.ejor.2010.05.029  567 

Dutta, J., & Roy, S. (2022). OccupancySense: Context-based indoor occupancy detection & 568 

prediction using CatBoost model. Applied Soft Computing, 119, 108536. 569 

https://doi.org/10.1016/j.asoc.2022.108536 570 

Gharechaei, N., Paknejad, F., Shirani Rad, A. H., Tohidloo, G., Jabbari, H. (2019). Change in 571 

oil fatty acids composition of winter oilseed rape genotypes under drought stress and 572 

different temperature regimes. Plant, Soil and Environment, 65, 503–507. 573 

https://doi.org/10.17221/519/2019-PSE 574 

Gonzalez-Fernandez, I., Iglesias-Otero, M. A., Esteki, M., Moldes, O. A., Mejuto, J. C., Simal-575 

Gandara, J. (2018). A critical review on the use of artificial neural networks in olive oil 576 

production, characterization and authentication. Critical Reviews in Food Science and 577 

Nutrition, 59(12), 1913–1926. https://doi.org/10.1080/10408398.2018.1433628 578 

Grilo, E. C., Costa, P. N., Gurgel, C. S. S., Beserra, A. F. de L., Almeida, F. N. de S., 579 

Dimenstein, R. (2014). Alpha-tocopherol and gamma-tocopherol concentration in 580 

vegetable oils. Food Science and Technology, 34(2), 379–385. 581 

https://doi.org/10.1590/S0101-20612014005000031 582 

https://doi.org/10.1016/j.agwat.2013.11.007
https://doi.org/10.1007/s11947-009-0314-8
https://doi.org/10.1016/j.ejor.2010.05.029
https://doi.org/10.17221/519/2019-PSE
https://doi.org/10.1080/10408398.2018.1433628
https://doi.org/10.1590/S0101-20612014005000031


25 

 

Gruszka, J., & Kruk, J. (2007). RP-LC for determination of plastochromanol, tocotrienols and 583 

tocopherols in plant oils. Chromatographia, 66, 909–913. 584 

Imahara, H., Minami, E., Saka, S. (2006). Thermodynamic study on cloud point of biodiesel 585 

with its fatty acid composition. Fuel, 85(12-13), 1666–1670. 586 

https://doi.org/10.1016/j.fuel.2006.03.003 587 

Iniyan, S., Jebakumar, R., Mangalraj, P., Mohit, M., Nanda, A. (2020). Plant Disease 588 

Identification and Detection Using Support Vector Machines and Artificial Neural 589 

Networks, In: S. Dash, C. Lakshmi, S. Das & B. Panigrahi (Eds.), Artificial Intelligence 590 

and Evolutionary Computations in Engineering Systems. Advances in Intelligent Systems 591 

and Computing 1056, (pp. 15–27). Springer, Singapore. https://doi.org/10.1007/978-981-592 

15-0199-9_2 593 

Islam Khan, S. I., Islam, N., Uddin, J., Islam, S., Nasir, M. K. (2021). Water quality prediction 594 

and classification based on principal component regression and gradient boosting 595 

classifier approach, Journal of King Saud University - Computer and Information 596 

Sciences, in press. https://doi.org/10.1016/j.jksuci.2021.06.003 597 

Jawad, M., Ghulam-e, M., Muhammad, A. (2022). Accurate estimation of tool wear levels 598 

during milling, drilling and turning operations by designing novel hyperparameter tuned 599 

models based on LightGBM and stacking, Measurement, 190, 110722. 600 

https://doi.org/10.1016/j.measurement.2022.110722 601 

Khanal, S., Fulton, J., Klopfenstein, A., Douridas, N., Shearer, S. (2018). Integration of high 602 

resolution remotely sensed data and machine learning techniques for spatial prediction of 603 

soil properties and corn yield. Computers and Electronics in Agriculture, 153, 213–225. 604 

https://doi.org/10.1016/j.compag.2018.07.016  605 

Kleijnen, J. P. C. (2018). Design and Analysis of Simulation Experiments. In: J. Pilz, D. Rasch, 606 

V.Melas, & K. Moder, (Eds.), Statistics and Simulation. IWS 2015, (pp. 3-22). Springer 607 

https://doi.org/10.1016/j.fuel.2006.03.003
https://doi.org/10.1007/978-981-15-0199-9_2
https://doi.org/10.1007/978-981-15-0199-9_2
https://doi.org/10.1016/j.jksuci.2021.06.003
https://doi.org/10.1016/j.compag.2018.07.016


26 

 

Proceedings in Mathematics & Statistics, 231, Springer, Cham. 608 

https://doi.org/10.1007/978-3-319-76035-3_1  609 

Kollo, T., & von Rosen, D. (2005). Advanced Multivariate Statistics with Matrices, in 610 

Hazewinkel, M. (Ed.), Mathematics and Its Applications. Vol. 579, (pp. 1–485). Springer: 611 

Dordrecht, The Netherlands. https://doi.org/10.1007/1-4020-3419-9  612 

Koprna, R., Nerušıl, P., Kolovrat, O., Kučera, V., Kohoutek, A. (2006). Estimation of fatty acid 613 

content in intact seeds of oilseed rape (Brassica napus L.) lines using near-infrared 614 

spectroscopy. Czech Journal of Genetics and Plant Breeding, 42(4), 132–136. 615 

https://doi.org/10.17221/3643-CJGPB  616 

Kravić, S., Suturović, Z., Švarc-Gajić, J., Stojanović, Z., Pucarević, M. (2010). Determination 617 

of trans fatty acids in foodstuffs by gas chromatography-mass spectrometry after 618 

simultaneous microwave assisted extraction-esterification. Journal of the Serbian 619 

Chemical Society, 75(6), 803–812. https://doi.org/10.2298/JSC090717051K 620 

Kujawa, S., & Niedbała, G. (2021). Artificial Neural Networks in Agriculture. Agriculture, 11, 621 

497. https://doi.org/10.3390/agriculture1106097  622 

Lazzez, A., Perri, E., Caravita, M.A., Khlif, M., Cossentini, M. (2008). Influence of olive 623 

maturity stage and geographical origin on some minor components in virgin olive oil of 624 

the Chemlali variety. Journal of Agricultural and Food Chemistry, 53, 982-988. 625 

https://doi.org/10.1021/jf0722147 626 

Lebold, K. M., & Traber, M. G. (2014). Interactions between α-tocopherol, polyunsaturated 627 

fatty acids, and lipoxygenases during embryogenesis. Free Radical Biology and 628 

Medicine, 66, 13–19. https://doi.org/10.1016/j.freeradbiomed.2013.07.039 629 

Ma, H., Ding, F., Wang, Y. (2022). A novel multi-innovation gradient support vector machine 630 

regression method, ISA Transactions, in press. 631 

https://doi.org/10.1016/j.isatra.2022.03.006 632 

https://doi.org/10.1007/978-3-319-76035-3_1
https://doi.org/10.1007/1-4020-3419-9
https://doi.org/10.17221/3643-CJGPB
https://doi.org/10.2298/JSC090717051K
https://doi.org/10.3390/agriculture1106097
https://doi.org/10.1021/jf0722147
https://doi.org/10.1016/j.freeradbiomed.2013.07.039


27 

 

Matthaus, B., Özcan, M. M., Al Juhaimi, F. (2016). Some rape/canola seed oils: Fatty acid 633 

composition and tocopherols. Zeitschrift für Naturforschung C, 71(3-4), 73–77, 634 

https://doi.org/10.1515/znc-2016-0003 635 

Montgomery, D. C. (1984). Design and Analysis of Experiments (2nd ed). New York, USA: 636 

John Wiley and Sons Inc. https://doi.org/10.1002/qre.4680030319 637 

Niedbała, G., Piekutowska, M. (2018). Application of artificial neural networks for the 638 

prediction of quality characteristics of potato tubers – Innovator variety. Journal of 639 

Research and Applications in Agricultural Engineering, 63(4), 132-138. 640 

https://www.pimr.eu/wp-content/uploads/2019/05/2018_4_GNMP.pdf 641 

Niedbała, G., Piekutowska, M., Weres, J., Korzeniewicz, R., Witaszek, K., Adamski, M., 642 

Pilarski, K. Czechowska-Kosacka, A., Krysztofiak-Kaniewska, A. (2019). Application of 643 

Artificial Neural Networks for Yield Modeling of Winter Rapeseed Based on Combined 644 

Quantitative and Qualitative Data. Agronomy, 9, 781. 645 

https://doi.org/10.3390/agronomy9120781 646 

Niedbała, G., Kurasiak-Popowska, D., Stuper-Szablewska, K., Nawracała, J. (2020). 647 

Application of Artificial Neural Networks to Analyze the Concentration of Ferulic Acid, 648 

Deoxynivalenol, and Nivalenol in Winter Wheat Grain. Agriculture, 10(4), 127. 649 

https://doi.org/10.3390/agriculture10040127 650 

Opinion of the Scientific Panel on Contaminants in the Food Chain on a request from the 651 

European Commission on glucosinolates as undesirable substances in animal feed 652 

Glucosinolates as undesirable substances in animal feed - Scientific Opinion of the Panel 653 

on Contaminants in the Food Chain, (2008). EFSA Journal, 590, 1-76. 654 

https://doi.org/10.2903/j.efsa.2008.590 655 

Ozturk, F. (2019).  Evaluation of three canola (Brassica napus L.) cultivars for yield and some 656 

quality parameters under the environmental condition of southeastern Anatolia, Turkey. 657 

https://doi.org/10.1515/znc-2016-0003
https://doi.org/10.1002/qre.4680030319
https://www.pimr.eu/wp-content/uploads/2019/05/2018_4_GNMP.pdf
https://doi.org/10.3390/agronomy9120781
https://doi.org/10.3390/agriculture10040127
https://doi.org/10.2903/j.efsa.2008.590


28 

 

Applied Ecology and Environmental Research, 17, 2167-2177. 658 

http://dx.doi.org/10.15666/aeer/1702_21672177  659 

Pezo, L., Ćurčić, B. Lj., Filipović, V. S., Nićetin, M. R., Koprivica, G. B., Mišljenović, N. M., 660 

Lević, Lj. B. (2013). Artificial neural network model of pork meat cubes osmotic 661 

dehydratation. Chemical Industry, 67, 465-475. 662 

https://doi.org/10.2298/HEMIND120529082P 663 

Puntarić, E., Pezo, L., Zgorelec, Ž., Gunjača, J., Kučić Grgić, D., Voća, N. (2022). Prediction 664 

of the Production of Separated Municipal Solid Waste by Artificial Neural Networks in 665 

Croatia and the European Union. Sustainability, 14, 10133. 666 

https://doi.org/10.3390/su141610133  667 

Rajković, D., Marjanović Jeromela, A., Pezo, L., Lončar, B., Zanetti, F., Monti, A., Kondić 668 

Špika, A. (2022). Yield and Quality Prediction of Winter Rapeseed—Artificial Neural 669 

Network and Random Forest Models. Agronomy, 12(1), 58. 670 

https://doi.org/10.3390/agronomy12010058 671 

Rasaei, Z., & Bogaert, P. (2019). Spatial filtering and Bayesian data fusion for mapping soil 672 

properties: A case study combining legacy and remotely sensed data in Iran. Geoderma, 673 

344, 50–62. https://doi.org/10.1016/j.geoderma.2019.02.031  674 

Samaniego, E., Anitescu, C., Goswami, S., Nguyen-Thanh, V.M., Guo, H., Hamdia, K., 675 

Zhuang, X., Rabczuk, T. (2020). An energy approach to the solution of partial differential 676 

equations in computational mechanics via machine learning: Concepts, implementation 677 

and applications. Computer Methods in Applied Mechanics and Engineering, 362, 678 

112790. https://doi.org/10.1016/j.cma.2019.112790. 679 

Shirani Rad, A. H., Bitarafan, Z., Rahmani, F., Taherkhani, T., Moradi Aghdam, A., 680 

Nasresfahani, S. (2014). Effects of planting date on spring rapeseed (Brassica napus L.) 681 

http://dx.doi.org/10.15666/aeer/1702_21672177
https://doi.org/10.2298/HEMIND120529082P
https://doi.org/10.3390/su141610133
https://doi.org/10.3390/agronomy12010058
https://doi.org/10.1016/j.geoderma.2019.02.031
https://doi.org/10.1016/j.cma.2019.112790


29 

 

cultivars under different irrigation regimes. Turkish Journal of Field Crops, 19(2), 153-682 

157. http://www.field-crops.org/assets/pdf/product5496955d5a795.pdf 683 

Schulte, L. R., Ballard, T., Samarakoon, T., Yao, L., Vadlani, P., Staggenborg, S., Rezac, M. 684 

(2013). Increased growing temperature reduces content of polyunsaturated fatty acids in 685 

four oilseed crops. Industrial Crops and Products, 51,  212–219. 686 

https://doi.org/10.1016/j.indcrop.2013.08.075  687 

Siger, A., Michalak, M., Cegielska-Taras, T., Szała, L., Lembicz, J., Nogala-Kałucka, M. 688 

(2015). Genotype and environment effects on tocopherol and plastochromanol-8 contents 689 

of winter oilseed rape doubled haploid lines derived from F1 plants of the cross between 690 

yellow and black seeds. Industrial Crops and Products, 65, 134–141. 691 

https://doi.org/10.1016/j.indcrop.2014.12.006 692 

Su, J., Wang, Y., Niu, X., Shaa, S., Yu, J. (2022). Prediction of ground surface settlement by 693 

shield tunneling using XGBoost and Bayesian Optimization. Engineering Applications of 694 

Artificial Inteligence, 114, 105020. https://doi.org/10.1016/j.engappai.2022.105020 695 

Vetter, W., Darwisch, V., Lehnert, K. (2020). Erucic acid in Brassicaceae and salmon – An 696 

evaluation of the new proposed limits of erucic acid in food. Nutrition and Food Science 697 

Journal, 19, 9–15. https://doi.org/10.1016/j.nfs.2020.03.002 698 

Wang, X., Zhang, C., Li, L., Fritsche, S., Endrigkeit, J., Zhang, W., Long, Y., Jung, C., Meng, 699 

J. (2012). Unraveling the genetic basis of seed tocopherol content and composition in 700 

rapeseed (Brassica napus L.). PLoS one, 7(11), 1–15. 701 

https://doi.org/10.1371/journal.pone.0050038 702 

Wang, C-, Peng, G., De Baets, B. (2022).  Embedding metric learning into an extreme learning 703 

machine for scene recognition, Expert Systems with Applications, 203, 117505. 704 

https://doi.org/10.1016/j.eswa.2022.117505 705 

http://www.field-crops.org/assets/pdf/product5496955d5a795.pdf
https://doi.org/10.1016/j.indcrop.2013.08.075
https://doi.org/10.1016/j.indcrop.2014.12.006
https://doi.org/10.1016/j.nfs.2020.03.002
https://doi.org/10.1371/journal.pone.0050038
https://doi.org/10.1016/j.eswa.2022.117505


30 

 

Yang, J., Xu, Y. (2021). Prediction of fruit quality based on the RGB values of time–706 

temperature indicator. Journal of Food Science, 86(3), 932-941. 707 

https://doi.org/10.1111/1750-3841.15518 708 

Yoon, Y., Swales, G., Margavio, T. M. (1993). A Comparison of Discriminant Analysis versus 709 

Artificial Neural Networks. Journal of the Operational Research Society, 44(1), 51–60. 710 

https://doi.org/10.1057/jors.1993.6 711 

Yu, F., Feng, S., Du, W., Wang, D., Guo, Z., Xing, S., Jin, Z., Cao, Y., Xu, T. (2020). A Study 712 

of Nitrogen Deficiency Inversion in Rice Leaves Based on the Hyperspectral Reflectance 713 

Differential. Frontiers in Plant Science, 11, 573272. 714 

https://doi.org/10.3389/fpls.2020.573272 715 

Zhang, L., Yang, L., Ma, T., Shen, F., Cai, Y., Zhou, C. (2021). A self-training semi supervised 716 

machine learning method for predictive mapping of soil classes with limited sample data. 717 

Geoderma, 384, 114809. https://doi.org/10.1016/j.geoderma.2020.114809  718 

 719 

Figure captions 720 

 721 

Fig. 1. Average monthly a) temperatures, b) precipitations and c) sunshine hours in period 722 

2014-2018  723 

Months are written in Roman numerals starting from August (VIII); MYA multi year average 724 
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Fig. 2. Bar plots showing proportion of individual fatty acids in analyzed genotypes in period 726 

2015-2018 [(a) 2015, (b) 2016, (c) 2017, (d) 2018]. C16:0 palmitic acid; C18:0 stearic acid; 727 

C18:1 oleic acid; C18:2 linoleic acid; C18:3 linolenic acid; C22:1 erucic acid 728 

 729 

https://doi.org/10.1111/1750-3841.15518
https://doi.org/10.1057/jors.1993.6
https://doi.org/10.3389/fpls.2020.573272
https://doi.org/10.1016/j.geoderma.2020.114809


31 

 

Fig. 3. Bar plots showing proportion of alpha (AT) and gamma tocopherols (GT) in analyzed 730 

genotypes in period 2015-2018 [(a) 2015, (b) 2016, (c) 2017, (d) 2018]. 731 

 732 

Fig. 4. Correlation heatmap (a) with hierarchical clustering (b) of fatty acids and tocopherols. 733 

Coefficients of correlation are presented on side panel (a), positive correlations are labeled with 734 

blue while negative correlations are labeled with red colour. Colour intensity indicates strength 735 

of correlation (a, b). C16:0 palmitic acid; C18:0 stearic acid; C18:1 oleic acid; C18:2 linoleic 736 

acid; C18:3 linolenic acid; C22:1 erucic acid 737 

 738 

Fig. 5. Comparison between experimentally obtained and ANN model predicted values of (a) 739 

C16:0, (b) C18:0, (c) C18:1, (d) C18:2, (e) C18:3, (f) C22:1, (g) α-tocopherol, (h) γ-tocopherol 740 

and (i) total tocopherols  741 

 742 

Fig. 6. Training graph for MLP 44-10-9 network 743 

 744 

Fig. 7. The relative importance of the input variables on outputs, determined using Yoon 745 

interpretation method. Genotype number is presented in Supplementary Table 1. 746 

 747 

Fig. 8. Comparison between experimentally obtained and RFR model predicted values of (a) 748 

C16:0, (b) C18:0, (c) C18:1, (d) C18:2, (e) C18:3, (f) C22:1, (g) α-tocopherol, (h) γ-tocopherol 749 

and (i) total tocopherols  750 
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Table 1. Dosage of applied NPK fertilizer 

  NPK1 ratio 

Dosage of fertilizer 

(kg/ha) 

2014 1:0.1:0.1 250 

2015 09:15:15 450 

2016 08:15:15 350 

2017 16:16:16 350 

1NPK nitrogen, phosphorus, potassium 
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Table 2. Artificial neural network model summary (performance and errors), for training, testing, 

and validation cycles  

Network 

name 

Performance Error Training 

algorithm 

Error 

function 

Hidden 

activation 

Output 

activation Train. Test. Train. Test. 

MLP 44-10-9 
0.858 0.722 239.273 698.266 BFGS 63 SOS Tanh Logistic 

*Performance term represents the coefficients of determination, while error terms indicate a lack 

of data for the ANN model, Train. stands for training, Test. for testing, BFGS is Broyden–Fletcher–

Goldfarb–Shanno algorithm, Tanh - hyperbolic tangent function, Logistic – logistic function.  



Table 3. The "goodness of fit" tests for the developed ANN model 

Output variable χ2 RMSE MBE MPE SSE AARD r2 

C16:0 0.027 0.163 0.012 3.187 12.763 126.917 0.769 

C18:0 0.036 0.188 -0.010 11.015 16.955 92.873 0.693 

C18:1 2.707  1.630 -0.189 2.180 1.3 × 103 6.9 × 102   0.887 

C18:2 0.315 0.556 0.031 2.239 147.802 234.491 0.812 

C18:3 0.135 0.365 0.010 2.583 63.739 268.693 0.806 

C22:1 0.355 0.590 0.040 354.471 166.430 238.442 0.952 

α-tocopherol 1.3 × 102  11.335 0.882 5.262 6.1 × 104 7.1 × 103   0.763 

γ-tocopherol 2.6 × 102  15.834 0.948 3.900 1.2 × 105 9400  0.770 

Total tocopherols 4.7 × 102  21.518 1.874 3.452 2.2 × 105 7900 0.783 

χ2 – reduced chi-square; RMSE - root mean square error; MBE – mean bias error; MPE – mean 

percentage error; SSE – sum of squared errors; AARD – absolute average relative deviation; r2 – 

coefficient of determination; C16:0 palmitic acid; C18:0 stearic acid; C18:1 oleic acid; C18:2 

linoleic acid; C18:3 linolenic acid; C22:1 erucic acid; α-T alpha-tocopherol; γ-T gamma-

tocopherol. 



 

Table 4. The "goodness of fit" tests for the developed RFR model 

Output variable χ2 RMSE MBE MPE SSE AARD r2 

C16:0 770.384 27.494 3.697 4.028 356291.711 5431.315 0.989 

C18:0 770.386 27.494 3.695 7.890 356296.887 5432.765 0.989 

C18:1 773.680 27.553 3.735 3.704 3.6 × 105 5.8 × 103 0.986 

C18:2 0.356 0.591 0.021 2.267 167.321 237.465 0.807 

C18:3 0.126 0.352 0.014 2.300 59.416 140.972 0.823 

C22:1 3.105 1.746 0.129 536.263 1454.465 305.157 0.707 

α-tocopherol 2.0 × 102 14.122 0.089 6.767 9.6 × 104 1.5 × 104 0.631 

γ-tocopherol 3.7 × 102 19.078 1.572 5.115 1.7 × 105 1.4 × 104 0.671 

Total tocopherols 7.7 × 102 27.434 2.685 4.740 3.6 × 105 1.0 × 104 0.654 

χ2 – reduced chi-square; RMSE - root mean square error; MBE – mean bias error; MPE – mean 

percentage error; SSE – sum of squared errors; AARD – absolute average relative deviation; r2 – 

coefficient of determination. 
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Supplementary Table 1. Mean genotypic values for fatty acids (%) and tocopherols content (mg/kg) during four-year period. 

No. Genotype C18:1 C18:2 C18:3 C16:0 C18:0 C22:1  α-T  γ-T  Total-T  

1 NS-H-R-1  59.43 no 20.80 opq 11.99 opq 4.21 mnopq 1.56 fghijk 0.31 abcde 164.31 ijkl 282.85 fghi 447.16 defgh 

2 NS-H-R-2  59.08 klm 21.13 rs 11.53 ijkl 4.40 rs 1.62 hijk 0.41 abcdef 172.82 mno 291.49 ijkl 464.31 jklm 

3 NS-H-R-3  59.02 kl 20.77 op 11.37 fghi 4.46 s 1.54 cdefghijk 0.52 defg 179.20 nop 305.80 mn 485.00 opq 

4 Banaćanka  58.73 ij 20.79 pq 12.01 opq 4.33 qrs 1.62 ghijk 0.38 abcdef 183.82 pqr 303.71 mn 487.53 q 

5 Slavica  59.07 klm 20.90 op 11.83 mno 4.57 t 1.60 ghijk 0.26 abcd 187.54 qr 301.65 lmn 489.19 q 

6 Valeska tamna 49.72 b 20.39 jkl 10.54 a 4.35 qrs 1.63 hijk 5.50 n 218.51 s 249.95 a 468.46 klmn 

7 Valeska svetla 54.45 c 19.92 hi 10.73 bc 4.23 klmnopq 1.61 ghijk 3.59 l 182.85 pqr 267.86 bc 450.71 efghij 

8 Zlatna  61.13 v 20.30 jk 10.65 ab 4.30 opqr 1.57 fghijk 0.23 abc 155.35 efgh 279.86 efgh 435.21 cde 

9 NS-L-74  61.43 wx 19.63 f 11.05 d 3.95 bcde 1.66 jk 0.23 abc 163.69 ijkl 278.84 defgh 442.53 defg 

10 Branka 60.64 st 19.02 c 11.27 efg 4.16 hijklmn 1.65 jk 0.84 hi 165.97 jklm 279.46 defgh 445.43 defg 

11 Express  60.94 u 19.39 e 11.12 de 4.20 klmnop 1.80 l 0.41 abcdef 165.27 jklm 271.38 cde 436.65 cdef 

12 NS-L-7  61.90 y 19.40 e 10.85 c 3.89 bc 1.59 fghijk 0.31 abcde 137.64 a 277.84 cdefgh 415.49 b 

13 Nevena 54.69 d 18.48 b 11.69 klm 3.94 bcde 1.53 cdefghijk 3.88 m 145.77 b 268.67 bcd 414.43 b 

14 Valesca  57.63 e 21.28 tu 12.09 qr 4.29 opqr 1.54 cdefghijk 0.60 fgh 188.76 r 325.42 o 514.18 r 

15 Ilia  59.28 mn 20.72 nop 11.50 hijk 4.07 efghij 1.48 bcdefgh 0.72 ghi 172.73 mno 295.44 jklm 468.18 klmn 

16 Kata  61.50 x 19.68 fg 10.54 a 4.24 lmnopq 1.56 bcdefghij 0.44 bcdef 135.93 a 261.13 b 397.06 a 

Supplementary Tables 1, 2, 3



17 Nena  54.76 d 19.28 de 11.45 ghij 4.11 fghijk 1.67 k 3.72 lm 154.23 defg 297.68 klmn 451.91 fghij 

18 NS-L-31  61.37 wx 19.34 e 11.28 efg 4.10 fghijk 1.54 cdefghijk 0.28 abcde 165.36 jklm 286.24 ghij 451.59 fghij 

19 NS-L-126  59.71 pq 20.52 lm 12.08 pqr 4.25 mnopq 1.64 ijk 0.18 ab 172.22 mn 307.33 n 479.55 mnopq 

20 NS-L-33 60.58 tu 20.03 i 11.43 ghij 4.26 nopq 1.61 ghijk 0.26 abcd 147.47 bcd 301.09 lmn 448.57 defghi 

21 NS-L-128  58.49 gh 21.45 tu 12.34 st 3.94 bcde 1.49 bcdefghi 0.33 abcde 167.45 klm 287.85 hijk 455.30 ghijk 

22 Svetlana 60.27 s 20.72 nop 11.49 hij 4.18 hijklmn 1.44 bcdef 0.24 abc 189.74 r 300.31 lmn 490.05 q 

23 Jasna  61.48 x 20.29 jk 10.49 a 4.32 pqr 1.57 efghijk 0.13 a 163.30 ijkl 308.56 n 471.86 lmnop 

24 NS-L-101  58.34 g 20.48 klm 11.26 efg 4.14 fghijklmn 1.53 bcdefghijk 1.10 k 173.12 mno 297.75 klmn 470.88 klmno 

25 Zorica 58.57 hi 20.67 mno 12.42 t 4.06 efghi 1.41 bcd 0.54 efg 153.16 cde 281.43 efghi 434.59 cd 

26 NS-L-102  37.59 a 17.08 a 11.70 lm 3.85 b 1.66 jk 14.13 o 161.50 ghijk 284.75 ghij 446.25 defg 

27 NS-L-134  59.52 op 20.50 lm 11.46 ghij 4.03 defg 1.56 efghijk 0.50 cdefg 170.58 lm 285.26 ghij 455.84 ghijk 

28 NS-L-32 59.13 lm 20.99 qr 11.21 def 4.06 efghi 1.40 bc 0.72 ghi 183.98 pqr 303.13 mn 487.11 pq 

29 NS-L-136  60.51 t 20.55 lmn 11.42 ghij 4.20 jklmnop 1.24 a 0.14 a 165.53 jklm 297.44 klmn 462.97 ijkl 

30 NS-L-137 57.95 f 21.59 u 12.20 rs 4.41 rs 1.42 bcde 0.61 fgh 180.16 opq 303.40 mn 483.56 nopq 

31 NS-L-138  58.88 jk 21.30 qr 11.55 ijkl 4.30 opqr 1.56 defghijk 0.40 abcdef 172.68 mno 276.13 cdefg 448.81 defghij 

32 NS-L-251  54.73 d 20.59 mno 11.84 mno 4.15 hijklmn 1.56 defghijk 3.06 k 162.45 hijk 307.71 n 470.15 klmno 

33 NS-L-210  61.24 vw 18.37 b 11.32 fgh 4.19 ijklmno 1.63 hijk 0.73 ghi 153.63 def 323.33 o 476.96 lmnopq 

34 NS-L-44  60.83 tu 20.04 i 11.90 nop 3.62 a 1.50 bcdefghi 0.21 ab 146.22 bc 277.82 cdefgh 424.04 bc 



35 NS-L-45  61.23 vw 19.78 gh 11.59 jkl 4.01 cdef 1.38 b 0.25 abcd 142.35 ab 272.57 cdef 414.92 b 

36 NS-L-46 59.96 r 20.89 pq 11.44 ghij 4.04 defgh 1.45 bcdefg 0.29 abcde 157.27 efghi 324.23 o 481.50 nopq 

37 NS-L-47  60.86 u 19.89 hi 11.80 mn 3.93 bcd 1.48 bcdefgh 0.25 abcd 178.81 nop 291.34 ijkl 470.16 klmno 

38 Jelena 59.85 qr 20.25 j 11.80 mn 4.12 fghijklm 1.53 bcdefghijk 0.41 abcdef 161.05 fghijk 300.88 lmn 461.93 hijkl 

39 Forward  60.20 s 18.37 b 11.57 ijkl 4.13 fghijklmn 1.42 bcde 0.95 jk 158.63 efghij 318.59 o 477.22 lmnopq 

40 Maidan  60.79 tu 19.12 cd 11.32 fgh 4.11 fghijkl 1.54 cdefghijk 0.86 hij 155.48 efgh 287.81 hijk 443.29 defg 

 Mean 58.64 20.12 11.48 4.15 1.55 1.22 166.41 291.60 458.01 

 Maximum 64.58 22.88 13.60 4.91 2.09 17.41 233.88 369.42 572.28 

 Minimum 33.53 15.75 9.31 3.34 0.61 0.05 121.83 204.87 341.21 

Different letters indicate that means are significantly different from each other (p < 0.05). Fatty acids order is from highest to lowest content. They 

are reported as percent of total fatty acids in the sample. C18:1 oleic acid; C18:2 linoleic acid; C18:3 linolenic acid; C16:0 palmitic acid; C18:0 

stearic acid; C22:1 – erucic acid; α-T alpha-tocopherol; γ-T gamma-tocopherol; Total-T total tocopherols



Supplementary Table 2. Elements of matrix W1 and vector B1 (presented in the bias row) 

Variable 1 2 3 4 5 6 7 8 9 10 

YEAR(2015) -0.066 -0.225 0.482 0.925 0.679 -0.670 -0.067 0.145 2.104 -1.243 

YEAR(2016) 0.894 0.099 0.319 -0.385 -1.113 -0.131 -1.553 -1.095 -1.795 0.899 

YEAR(2017) 0.030 0.483 -0.041 1.005 -0.192 -2.079 0.697 -0.789 0.945 -0.501 

YEAR(2018) -1.421 0.488 -0.730 -1.455 0.726 3.150 1.607 1.534 0.075 0.636 

GENOTYPE(1) -0.724 0.047 0.233 -0.811 0.522 1.133 0.724 0.725 0.002 -0.461 

GENOTYPE(10) 0.239 -0.240 -0.275 1.024 0.511 -0.065 -0.488 0.016 0.623 0.414 

GENOTYPE(11) -0.461 0.496 0.103 0.517 0.385 0.499 0.345 0.073 0.358 0.070 

GENOTYPE(12) 0.345 -0.333 0.875 0.471 0.948 -0.562 0.212 -0.570 0.458 0.468 

GENOTYPE(13) 1.435 -0.853 -0.223 0.930 0.129 -0.004 -0.308 0.256 0.160 -0.070 

GENOTYPE(14) -0.409 0.483 0.842 -0.473 -1.274 0.640 -0.001 -1.599 0.266 -0.672 

GENOTYPE(15) 0.256 1.082 0.279 0.482 -0.391 0.188 -0.939 0.354 0.886 -0.170 

GENOTYPE(16) -0.083 1.484 -0.198 0.494 0.398 -0.294 -0.541 0.555 -0.411 1.231 

GENOTYPE(17) 0.250 0.038 0.041 1.112 -0.640 0.870 -0.350 0.367 0.700 0.028 

GENOTYPE(18) 0.336 -0.635 0.048 -0.705 0.522 0.135 0.904 -1.058 0.289 0.877 

GENOTYPE(19) -0.649 0.323 0.425 -0.145 -0.217 0.648 0.090 0.477 0.233 -0.610 

GENOTYPE(2) -0.365 0.095 -0.855 -0.074 1.670 0.147 -1.222 1.489 0.326 0.492 

GENOTYPE(20) -0.399 0.419 0.072 -0.383 -0.845 -0.043 1.789 0.688 0.693 -0.340 

GENOTYPE(21) 0.307 -0.839 0.872 -0.826 -0.039 -0.164 -0.122 -0.745 -1.844 -1.157 

GENOTYPE(22) 0.576 -0.782 -0.801 -0.895 1.669 -0.222 -0.878 0.032 0.992 1.385 

GENOTYPE(23) -0.192 0.085 0.079 0.518 0.599 0.078 -1.295 -0.320 0.811 2.115 

GENOTYPE(24) 0.125 -1.528 -0.507 -0.692 1.049 -0.135 -1.222 -0.874 -3.601 1.374 

GENOTYPE(25) 0.585 0.195 1.033 -1.409 -1.308 0.481 0.974 -0.171 -0.550 -1.078 

GENOTYPE(26) 1.007 -0.815 -2.860 2.002 -0.790 0.585 1.634 1.271 1.672 -1.140 

GENOTYPE(27) 0.044 0.102 0.886 0.107 -0.743 0.265 -0.123 -0.912 -1.200 -0.894 

GENOTYPE(28) 0.772 -0.023 -0.076 -0.401 -0.281 -0.021 -1.140 -1.107 0.503 0.308 

GENOTYPE(29) 0.262 -0.692 -0.337 -1.051 0.317 -0.739 -0.794 0.502 -0.953 0.693 

GENOTYPE(3) -1.855 1.539 -0.570 -0.693 -0.691 0.124 1.052 0.555 0.218 -0.108 

GENOTYPE(30) -0.101 0.010 0.501 -1.383 -0.923 1.848 -1.535 0.098 -1.970 0.276 

GENOTYPE(31) -0.034 0.803 -0.335 -0.029 1.285 0.576 -1.710 1.242 -0.165 0.359 

GENOTYPE(32) -0.680 1.148 0.362 1.936 -2.425 -1.712 -0.283 0.326 -0.797 -1.971 

GENOTYPE(33) -1.094 0.192 -0.009 0.592 -0.270 0.114 1.434 0.561 1.205 0.155 

GENOTYPE(34) 1.895 -0.873 0.792 0.346 1.309 -0.028 -0.858 0.161 0.501 -0.370 

GENOTYPE(35) 1.082 -0.507 0.458 0.027 -0.027 -1.182 -0.651 -0.216 0.139 -0.003 

GENOTYPE(36) -0.314 -0.174 0.277 0.536 -0.526 -1.110 -0.624 0.155 0.579 0.059 

GENOTYPE(37) 0.240 -0.685 -0.051 -0.908 0.167 -0.816 1.593 -0.503 0.687 -0.344 

GENOTYPE(38) 0.043 -0.506 0.411 -0.522 -0.518 0.003 0.140 -0.621 -1.402 -0.320 

GENOTYPE(39) -0.080 -0.622 -0.394 -0.266 -0.431 -1.680 1.870 -0.064 0.937 0.331 

GENOTYPE(4) -0.865 -0.611 -0.497 -0.331 1.192 -0.162 -0.392 0.918 -0.400 -0.306 

GENOTYPE(40) 0.121 -0.325 -0.090 0.464 0.065 -0.246 0.495 -0.187 0.378 0.234 

GENOTYPE(5) -1.535 1.309 -0.357 -1.072 -0.838 0.545 1.120 0.354 -0.110 -0.414 



GENOTYPE(6) 0.465 1.625 -1.021 1.302 0.039 0.094 -0.659 -1.377 0.122 -0.700 

GENOTYPE(7) 0.318 -0.157 -0.990 0.427 0.052 -0.120 0.633 0.301 0.851 -0.330 

GENOTYPE(8) -1.441 0.606 0.308 -0.763 0.071 -0.293 1.943 -0.265 -0.477 0.423 

GENOTYPE(9) 0.081 0.018 1.619 0.728 0.532 0.876 -0.133 -0.957 0.539 -0.151 

Bias -0.563 0.897 0.037 0.113 0.104 0.352 0.733 -0.185 1.333 -0.233 

 



Supplementary Table 3. Elements of matrix W2 and vector B2 (presented in the bias column) 

 1 2 3 4 5 6 7 8 9 10 Bias 

C16:0 -0.822 0.529 -0.683 -0.371 -0.049 0.157 -0.296 -0.149 -0.123 0.058 -0.386 

C18:0 -0.509 -0.168 -0.079 0.591 0.426 0.633 0.318 -0.063 -0.114 -0.301 0.236 

C18:1 -0.215 0.971 1.159 -0.496 0.734 -1.116 0.294 -0.121 0.044 0.809 0.815 

C18:2 -0.485 0.422 0.035 -1.107 0.200 -0.188 -1.294 -0.115 0.090 -0.769 0.378 

C18:3 -0.311 -1.190 0.309 -0.595 -0.399 0.409 -0.497 0.472 0.407 -0.673 0.554 

C22:1 1.425 0.158 -1.569 1.498 -0.743 1.803 0.918 -0.097 -0.324 -0.629 -3.300 

α-tocopherol -1.067 -0.364 -1.391 -0.639 0.081 0.681 -1.541 -1.827 1.145 -1.189 -0.713 

γ-tocopherol -1.494 -2.191 0.364 -0.266 -0.967 -0.028 -1.102 0.063 1.461 0.104 0.732 

Total tocopherols -1.459 -1.647 -0.326 -0.450 -0.639 0.242 -1.383 -0.688 1.471 -0.388 0.057 

C16:0 palmitic acid; C18:0 stearic acid; C18:1 oleic acid; C18:2 linoleic acid; C18:3 linolenic acid; C22:1 – erucic acid; α-tocopherol alpha-

tocopherol; γ-tocopherol gamma-tocopherol 

 

 


