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Abstract: Steam distillation was used for the isolation of Dracocephalum moldavica L. (Moldavian
dragonhead) essential oil (DMEO). This aromatic herbaceous plant is widespread across the Northern
Hemisphere regions and has been utilized in health-improving studies and applications. In addition
to the DMEO, the hydrolate (DMH), a byproduct of the distillation process, was also collected. The
DMEO and DMH were analyzed and compared in terms of their chemical composition, as well as
their in vitro biological activities. The main component in DMEO was geranyl acetate, while geranial
was dominant in DMH. The DMEO demonstrated better antioxidant and antimicrobial activities
compared with the DMH against Staphylococcus aureus, Escherichia coli, Salmonella Typhimurium, and
Listeria monocytogenes, which represent sources of food-borne illness at the global level. The DMEO
and DMH show promise as antioxidant and antimicrobial additives to various products.

Keywords: Moldavian dragonhead; phytochemicals; large-scale distillation; in vitro biological activity;
time-kill kinetics modeling

1. Introduction

Medicinal and aromatic plants have been utilized in traditional medicine around the
world for millennia and continue to play an important role in treating diseases and provid-
ing nutritive support [1]. Dracocephalum moldavica L., known as Moldavian dragonhead,
or Moldavian balm, is an aromatic herbaceous plant native to the temperate climate of
Asia, however, nowadays it is found across the Northern Hemisphere [2]. D. moldavica
essential oil (DMEO) has a citrus-like flavor due to the contents of geranial, neral, and
geranyl acetate, and reassembles other lemon-scented plants such as lemon balm and
lemon catnip [3,4]. Previous research showed that this plant had antioxidant [5–9] and
antimicrobial properties [10–13]. In addition, the plant also displayed sedative [14,15],
antidepressant [16], antinociceptive [17], anti-inflammatory [18,19], as well as neuroprotec-
tive [20,21] and cardioprotective effects [22–25].

Recently, there has been an increased interest in its therapeutic benefits due to reports
on its biological activities. Indeed, medicinal plants are being used in healthcare and
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everyday nutrition, mainly as functional food and nutraceuticals [26,27], but also as natural
preservatives [28,29]. Medicinal plants can be used fresh or dry, in the form of herbal
tea, extract, essential oil, or pharmaceutical formulations (tablets, capsules, etc.). Plant
essential oils possess a wide spectrum of biological activities, and are used in the food
industry, but also in human and veterinary medicine [30]. Hydrolates (hydrosols and
distillate waters) are byproducts of steam distillation. Generally, hydrolates contain a
small amount of dissolved essential oil and other constituents and possess some biological
activities [31]. Therefore, hydrolates may have potential application in the food industry
for flavoring, preservation, and in soft drinks, but can also be applied in aromatherapy,
cosmetics, agriculture, and veterinary medicine [32].

This investigation aimed to determine the composition of essential oil and hydrolate
of D. moldavica (DMEO and DMH, respectively), grown as an essential-oil-bearing crop
in the Republic of Serbia and distilled under semi-industrial conditions, and the in vitro
antioxidant and antimicrobial activities.

2. Results
2.1. Volatile Compounds of Essential Oil and Hydrolate

The main compounds detected in the DMEO and DMH are presented in Table 1
(GC-FID chromatograms of essential oil and hydrolate are given in the Supplementary
Materials, Figures S1 and S2, respectively). The most abundant compounds in the DMEO
(20 compounds, comprising 98.1%) were geranyl acetate (53.2%), followed by geranial
(16.8%), and neral (10.7%), while in the hydrolate, there were 23 identified compounds
(comprising 96.0%), and the most abundant were geranial (23.4%), neral (22.4%), and
geraniol (21.3%) (Table 1).

Table 1. Chemical composition of D. moldavica essential oil (DMEO) and hydrolate (DMH).

No Compound RI DMEO DMH

1 1-octen-3-ol 974 - 0.5
2 6-methyl-5-hepten-2-one 986 0.1 3.3
3 dehydro-1,8-cineole 988 - 1.3
4 3-octanol 995 - 0.2
5 1,8-cineole 1028 - 0.6
6 Benzene acetaldehyde 1041 - 0.6
7 cis-linalool oxide (furanoid) 1069 - 1.7
8 trans-linalool oxide (furanoid) 1086 - 0.7
9 Linalool 1096 1.6 8.7
10 Camphor 1141 - 0.5
11 trans-chrysanthemal 1147 - 0.3
12 Nerol oxide 1149 0.1 0.4
13 Borneol 1159 0.6 2.9
14 Terpinen-4-ol 1171 0.1 1.7
15 Cryptone 1185 - 0.1
16 α-Terpineol 1188 - 0.9
17 trans-Isocitral 1777 0.4 -
18 Nerol 1227 - 2.2
19 Neral 1234 10.7 22.4
20 Linalool acetate 1247 7.9 -
21 Geraniol 1254 - 21.3
22 Geranial 1266 16.8 23.4
23 Lavandulyl acetate 1285 0.1 -
24 Methyl geranate 1318 0.1 -
25 Eugenol 1356 - 0.5
26 Neryl acetate 1358 4.6 0.1
27 α-Copaene 1369 0.2 -
28 Geranyl acetate 1379 53.2 1.7
29 trans-caryophyllene 1412 0.6 -
30 α-humulene 1447 0.1 -
31 trans-β-farnesene 1451 0.1 -
32 γ-muurolene 1474 0.4 -
33 E,E-α-farnesene 1502 0.1 -
34 Caryophyllene oxide 1575 0.3 -

Total 98.1 96.0
RI—Retention Indices on non-polar capillary column HP-5MS.
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2.2. Antioxidant Activity

The results of in vitro antioxidant activity of DMEO and DMH are shown in Table 2.
As a consequence of the high content of geranyl acetate, the DMEO exhibited a significantly
stronger antioxidant potential than the DMH. The DMEO at concentration of 250 mg/mL
showed the highest scavenging activity against lipid radicals (397.20 µmolTE/100 mL),
followed by ABTS•+ (312.54 µmolTE/100 mL), superoxide anion (294.77 µmolTE/100 mL),
and DPPH• (246.39 µmolTE/100 mL). The reducing power of DMEO was lower than
presented scavenging abilities but still with a high value of 171.46 µmolTE/100 mL.

Table 2. In vitro antioxidant activity of D. moldavica essential oil (DMEO) and hydrolate (DMH).

Antioxidant Activity
(µmolTE/100 mL) DMEO DMH

DPPH• 246.39 ± 1.17 b 8.82 ± 0.36 a

ABTS•+ 312.54 ± 11.63 b 25.44 ± 1.98 a

SOA 294.77 ± 13.29 b 19.58 ± 0.11 a

BCB 397.20 ± 36.12 b 41.63 ± 2.17 a

RP 171.46 ± 2.56 b 9.50 ± 0.64 a

Results are expressed as mean ± standard deviation (n = 3). Values in the row with different superscripts are
significantly different at p < 0.05 according to Fisher’s least significant differences (LSD) test. DPPH•—2,2-
diphenyl-1-picrylhydrazyl; ABTS•+—2,2′-azino-bis-3-ethylbenzothiazoline-6-sulphonic acid; SOA—superoxide
anion; BCB—β-carotene bleaching; and RP—reducing power.

2.3. Antimicrobial Activity

According to the obtained results of in vitro antimicrobial activity, a significant antimi-
crobial effect against almost all of the tested bacteria was gained, but not against the tested
strains of yeasts and fungi (Table 3). The tested DMEO did not show an antimicrobial effect
against B. cereus and P. aeruginosa strains, while in the case of the tested DMH, the antimi-
crobial effect was also absent against S. Typhimurium. Pseudomonas aeruginosa represents a
very resistant strain, well-known as bacteria resistant to numerous antibiotics, and indeed,
showed resistance to the antibiotics in this study.

Table 3. Assessment of the antimicrobial effect.

Test Organisms

The Inhibition Zone * (mm)

D. moldavica Controls

DMEO DMH Antibiotic Actidione

B. cereus ATCC 11778 16.0 ± 0.0 11.0 ± 0.0 27.0 ± 0.0 -
S. aureus ATCC 25923 40.0 ± 0.0 28.33 ± 0.0 28.0 ± 0.0 -
L. monocytogenes ATCC 35152 40.0 ± 0.0 27.0 ± 0.0 26.3 ± 0.6 -
E. coli ATCC 25922 40.0 ± 0.0 34.33 ± 0.58 27.0 ± 0.0 -
P. aeruginosa ATCC 27853 21.0 ± 0.0 nd 21.0 ± 0.0 -
S. Typhimurium ATCC 13311 40.0 ± 0.0 10.33 ± 0.58 29.33 ± 0.6 -
S. cerevisiae ATCC 9763 11.33 ± 0.58 nd - 34.0 ± 0.0
C. albicans ATCC 10231 nd nd - 37.0 ± 0.0
A. brasiliensis ATCC 16404 nd nd - 27.3 ± 0.6

* Mean value diameter of zone including disc (6 mm) ± standard deviation; nd—not detected.

The antimicrobial potential of DMEO and DMH toward sensitive microorganisms was
conducted by the microdilution method after the satisfactory results of the preliminary
screening. As shown in Table 4, the obtained MICs of DMEO showed relatively low activity
against all bacteria (MIC ≤ 3.125%). Conversely, higher MICs (between 3.125–12.5%) of
DMH were noted for sensitive bacteria. Consequently, the tested essential oil and hydrolate
can be utilized as antimicrobial agents for the worldwide struggle for prolonged shelf-life
of food, absence of food-borne pathogens, and epidemic crisis, but also can be used as an
eco-based substance in antimicrobial formulations in the pharmaceutical and cosmetics
industries.
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Table 4. Minimal inhibitory concentration (%).

Test Organisms DMEO DMH

B. cereus ATCC 11778 >100 * >100
S. aureus ATCC 25923 0.78 12.5
L. monocytogenes ATCC 35152 1.56 6.25

E. coli ATCC 25922 3.125 3.215
P. aeruginosa ATCC 27853 >100 >100
S. Typhimurium ATCC 13311 0.78 >100

S. cerevisiae ATCC 9763 >100 >100
C. albicans ATCC 10231 >100 >100
A. brasiliensis ATCC 16404 >100 >100

* According resistance on the initial concentration (see Table 3).

The in vitro antimicrobial potential of tested substances can be further clarified by the
time-kill or pharmacodynamics kinetics monitoring. In this way, in vitro examination of
antimicrobial substances can be quantified in view of the path of antimicrobial activity as
a function of contact time between sensitive microorganisms and targeted concentration
of tested essential oil and hydrolate [33]. Therefore, a pharmacodynamics pathway of the
antimicrobial effect of tested samples was conducted for all sensitive bacteria. The first step
was to determine bacterial profile growth curves without the addition of either DMEO nor
DMH. Non-treated bacterial suspensions were verified at the same time as the essential
oil- or hydrolate-treated samples. Bacterial growth profile curves (Figure 1) indicated
the number of live bacterial cells over an incubation period. There are noticeably three
growth phases for all four tested bacteria: lag phase, exponential (log), and stationary
phase. The initial phase is especially emphasized for L. monocytogenes and S. aureus,
while this period of cell adaption is minimal for the other two sensitive bacteria. The
differences are detected for maximum yield, which was obtained after approximately 12 h of
incubation. Briefly, the highest concentration of bacterial cells was 7.6 CFU/mL, 8 CFU/mL,
8.4 CFU/mL, and 8.8 log CFU/mL for S. aureus, L. monocytogenes, S. Typhimurium, and E.
coli, respectively. Regression coefficients for the obtained growth profile curves are shown
in Table 5. Additionally, the fit between experimental and model calculated results are
given in the Supplementary Materials, Table S1, indicating a very good predictive capacity
of the obtained models, with a coefficient of determination of 0.99 for all tested bacteria.
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Table 5. Regression coefficients for bacterial growth kinetics (control samples).

Coefficient
Bacterial Concentration (Log CFU/mL)

S. aureus L. monocytogenes E. coli S. Typhimurium

d 7.72 8.12 9.04 9.27
a 5.7 5.53 5.52 5.38
c 4.29 4.60 1.64 4.95
b 2.58 5.59 1.65 1.30

The regression coefficients could be depicted as follows: a–minimum of the experimentally gained values (t = 0);
d–the maximally gained values (t = ∞); c–the infection point (the point between a and d); b–the steepness of the
infection point c.

The pharmacodynamics potential of DMEO at different concentrations is graphically
represented in Figure 2. Kinetics profiles for MIC value indicate the biocide effect for S.
aureus and S. Typhimurium after a contact time of 3 h, while the same effect was observed for
L. monocytogenes and E. coli for 4 h and 12 h, respectively. A bactericidal effect was achieved
in twice as short a time for S. aureus when 2- and 4-time MIC were applied. Interestingly,
the effect of double MIC concentration did not decrease contact time which is necessary for
complete inhibition of L. monocytogenes but quadruple MIC enabled achieving bactericidal
effect after only 1 h of contact. Similar behavior was observed for S. Typhimurium, but
with a biocide effect after 3 h and 2 h for 2- and 4-time MIC, respectively. The killing rate
of 2- and 4-time MIC of DMEO for E. coli was achieved for 2 h or 4 h shorter contact time
compared with the MIC effect.
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Additionally, Table 6 summarizes regression coefficients of the kinetics models. This
parameter simplifies the speed and intensity of MIC and multiple MIC values. Furthermore,
Table S1 of the Supplementary Materials involves the goodness of fit between experimen-
tally and model obtained results. It can be concluded that the kinetics models (Figure 2)
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were precise, with high coefficients of determination (0.93–1), and can be used to under-
stand the antimicrobial effect of the DMEO against sensitive bacteria.

Table 6. Regression coefficients for time-kill kinetics models for DMEO-treated samples.

Coefficients

DMEO Concentration

S. aureus L. monocytogenes E. coli S. Typhimurium

MIC 2×MIC 4×MIC MIC 2×MIC 4×MIC MIC 2×MIC 4×MIC MIC 2×MIC 4×MIC

d 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
a 5.05 5.6 5.6 5.13 5.27 5.4 5.77 4.97 5.31 5.20 5.05 5.39
c 3.03 1.05 0.96 2.06 2.59 0.96 2.78 3.25 1.53 2.45 3.03 0.77
b 11.64 14.9 11.7 2.34 3.65 11.89 2.26 3.9 2.06 5.72 11.64 1.99

The regression coefficients could be depicted as follows: a–minimum of the experimentally gained values (t = 0);
d–the maximally gained values (t = ∞); c–the infection point (the point between a and d); b–the steepness of the
infection point c.

As previously noticed, MIC values for DMH are significantly higher compared with
DMEO in the case of L. monocytogenes and S. aureus. The same concentration of DMH
and DMEO is necessary for the inhibition of E. coli activity. Regardless of the mentioned
difference, the same pharmacodynamics study was done for hydrolate-treated samples
(Figure 3). The biocide effect of MIC values for all three sensitive bacteria indicated a rapid
bacteriostatic effect, showing a decrease in cell viability after the first three hours of contact
time. The final biocide effect was observed after 6 h. The biocide effect of MIC and double
MIC values was observed in the same contact time for in the case of L. monocytogenes and
E. coli. On the other hand, using a 2-time MIC value reduced the required contact time
for S. aureus. The complete reduction in bacterial viability was detected for 4 h, 5 h, or 6 h
contact time in the case of using 4-time MIC values for L. monocytogenes, S. aureus, and E.
coli, respectively. In this study, the antimicrobial effect of DMH as a byproduct in DMEO
production was reasonable suggesting new possibilities for the utilization of DMH.
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According to the regression coefficients for the gained kinetics models (Table 7) and
the fitness between experimentally and model obtained results (Supplementary Materials,
Table S1), it can be concluded that the models were accurate, with high coefficients of
determination (0.95–1) and the proposed models fit well with the experimental data. In
summary, the obtained models for DMH-treated samples can be used for the prediction of
antimicrobial effect based on contact time between bacterial cells and DMH.

Table 7. Regression coefficients for time-kill kinetics models for DMH-treated samples.

Coefficients
DMH Concentration

S. aureus L. monocytogenes E. coli S. aureus

MIC 2×MIC 4×MIC MIC 2×MIC 4×MIC MIC 2×MIC 4×MIC MIC 2×MIC 4×MIC

d 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
a 5.65 5.36 5.53 5.31 5.59 5.25 5.36 5.4 5.46 5.65 5.36 5.53
c 2.68 2.40 1.43 2.47 1.76 2.43 1.76 1.52 1.05 2.68 2.40 1.43
b 2.65 3.01 1.65 4.35 3.05 3.85 1.44 1.32 1.16 2.65 3.01 1.65

The regression coefficients could be depicted as follows: a–minimum of the experimentally gained values (t = 0);
d–the maximally gained values (t = ∞); c–the infection point (the point between a and d); b–the steepness of the
infection point c.

3. Discussion
3.1. Volatile Compounds of Essential Oil and Hydrolate

According to referenced data from the literature about DMEO chemical composition
(Table 8), as well as cluster analysis performed using this data for the construction an
unrooted phylogenetic tree (Figure 4), it could be assumed that the largest number of
accessions belonged to the geranial + neral + geranyl acetate chemotype [2,9,10,12,17,34–46].
The D. moldavica plants grown and utilized in this study also belonged to the above
chemotype. Other previously reported chemotypes of D. moldavica include: the geranyl
acetate + geranial + geraniol one [42,47–51], the 1,8 cineole + 4-terpineol [52], and the
linalool + geranial + fenchone [53].

Table 8. Chemical composition of DMEO according to the literature data.

No Reference 1,8-Cineole 4-Terpineol Fenchone Geranial Geraniol Geranyl
Acetate Linalool Methyl

Chavicol Neral Nerol Neryl
Acetate

1 [2] 0.0 0.0 0.0 29.6 5.4 27.2 0.4 0.0 19.4 0.4 3.0
2 [34] * 0.3 0.0 0.1 16.3 22.3 35.6 0.3 0.0 11.9 1.0 2.6
3 [35] * 0.0 0.0 0.0 26.2 4.6 35.0 0.2 0.0 20.7 0.0 4.1
4 [36] 0.0 0.0 0.0 25.5 0.5 15.2 1.3 16.0 9.7 0.3 1.2
5 [37] 0.0 0.0 0.0 27.3 20.7 23.2 0.8 0.0 18.6 0.0 2.1
6 [47] 0.0 0.0 0.0 21.6 39.5 12.4 0.8 0.0 17.1 1.5 1.6
7 [38] * 0.0 0.0 0.0 9.3 16.0 52.7 0.6 0.0 5.1 0.3 2.9
8 [9] * 0.0 0.0 0.0 36.6 2.9 26.7 0.3 0.0 25.7 0.1 1.2
9 [39] 0.0 0.0 0.0 26.3 16.9 22.5 1.5 0.0 21.3 1.0 0.4
10 [12] 0.0 0.0 0.0 28.5 19.6 16.7 0.8 0.0 21.2 1.9 1.8
11 [40] * 0.0 0.0 0.0 23.6 16.8 29.2 2.0 0.0 20.2 1.9 0.0
12 [48] 0.0 0.0 0.0 11.2 24.3 36.6 0.8 0.0 16.3 0.4 0.9
13 [52] 31.3 22.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
14 [41] 0.0 0.0 0.0 19.8 15.1 27.9 2.4 0.0 18.0 2.2 4.2
15 [42] 0.0 0.0 0.0 30.9 34.2 25.4 0.6 0.0 0.3 0.0 1.5
16 [42] 0.0 0.0 0.0 27.8 36.0 27.5 1.0 0.0 0.4 0.0 1.8
17 [43] 0.0 0.0 0.0 8.4 15.9 46.7 0.5 0.0 5.8 0.3 2.6
18 [17] 0.0 0.0 0.0 31.1 0.0 0.0 1.5 0.0 31.1 17.1 4.8
19 [44] 0.0 0.0 0.0 19.1 9.3 30.4 2.7 0.0 17.8 2.9 2.5
20 [10] 0.0 0.0 0.0 21.6 17.6 19.9 1.1 0.0 32.1 0.0 1.6
21 [53] * 0.4 0.0 13.8 15.9 6.9 1.3 28.1 1.2 0.0 1.4 0.9
22 [45] * 0.01 0.0 0.0 50.7 3.4 10.0 0.1 0.0 26.8 0.0 0.0
23 [49] 0.0 0.0 0.0 44.0 28.0 14.0 0.4 0.0 6.3 0.2 2.6
24 [46] 0.3 0.0 0.1 41.9 5.3 19.0 0.5 0.0 25.3 0.3 0.6
25 [50] 0.0 0.0 0.0 18.3 19.5 34.9 0.4 0.0 14.8 0.0 2.9
26 [51] 0.0 0.0 0.0 24.5 8.8 32.6 0.8 0.0 22.7 2.4 3.4
27 TS 0.0 0.1 0.0 16.8 0.0 53.2 1.6 0.0 10.7 0.0 4.6

* Average value from different agrotechnical measures (cropping patterns, fertilization, and irrigation); TS—this
study.
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The phylogenetic cluster tree for DMEO was estimated and drawn using R software
4.0.3, as it is previously described for essential oil of white horehound [54], immortelle [55],
hyssop [56], naked catmint [57], and sweet wormwood [58].

3.2. Antioxidant Activity

Plant essential oils represent natural sources of bioactive compounds with several
models of action, among them, scavenging of free radicals, prevention of chain reactions
initiation, reducing agents, and termination of peroxides, quenching of singlet oxygen, and
binding of metal ion catalysts [59]. Different in vitro assays have been used to estimate the
antioxidant potential of DMEO, while the data of DMH antioxidant activity have not been
previously published in the scientific literature. In general, for complex systems such as
essential oils, using at least three methods with different mechanisms is preferable and
in some cases required to evaluate antioxidant activities. The DPPH• and ABTS•+ assays
are efficient tools for the determination of antioxidant activity; although these methods
have an identical mechanism, the mediums for the assay are different which means there
is a dissimilar solubility of the isolated bioactive compounds [60]. The SOA, like ABTS•+

assay, share the water medium, but at a different pH level. Superoxide anion is the most
frequent free radical in vivo and deals as a precursor for other reactive oxygen species that
possess the capability to induce damage of important biological molecules. In the BCB



Plants 2022, 11, 941 9 of 16

assay, due to the absence of antioxidants, β-carotene undergoes rapid discoloration; this
could be explained by the integrated oxidation of β-carotene and linoleic acid-generating
free lipid species. Another defense mechanism in preventing the body from the dangerous
effect of free radicals is reducing these molecules by the antioxidants. In the present study,
reducing power was monitored through measurement of the ferrous ions transformation
in presence of antioxidants.

Geranyl acetate is known for its strong antioxidant properties due to its capacity to
reduce free radical stability via electron or hydrogen donating mechanisms [61]. As well,
geranyl acetate is insoluble in water but soluble in organic solvents and oil, which is the
reason for its low concentration in DMH.

Investigation of the DMEO antioxidant capacity obtained from D. moldavica plants
grown as a single-crop vs. intercropping systems with soybean in response to the applica-
tion of chemical fertilizer (urea and triple superphosphate) and organic manure had the
IC50 values in the range from 1.45 to 5.28 µg/mL [9]. Furthermore, the evaluation of the
antioxidant activity of DMEO using DPPH•, ABTS•+, and BCB assays showed that essential
oil possesses weaker scavenger activity for DPPH• and ABTS•+ radicals than ascorbic acid
and BHT, while higher activity was reported for peroxyl radicals [12]. The results from the
latter study were in agreement with the results of the present study. Generally, both DMEO
and DMH contain very efficient bioactive compounds such as geranyl acetate, geranial,
geraniol, and neral, which are responsible for the antioxidant activity. There is not enough
information about antioxidant mechanisms and other biological activities of DMEO and
DMH.

3.3. Antimicrobial Activity

The gained antimicrobial effect (see Section 2.3) can be the result of the chemical com-
position of the DMEO and DMH, due to the fact that geranyl acetate, as an ester derived
from geraniol, as well as geranial and neral (together known as citral) have good antibac-
terial properties and good thermal stability [62,63]. The mentioned group of bioactives
as well as this group of bioactives are especially dominant in DMEO, but also in DMH
(Table 2).

Resistance of B. cereus on the tested samples was not in line with the results of El-
Baky and El-Baroty [11] that reported the inhibitory effect of DMEO from Egypt in a
concentration of 0.07 mg/mL. This may suggest the difference in antimicrobial effect based
on the origin of the plant and differences in its chemical profile, which has been reported
previously [64–66]. Both DMEO and DMH samples in this study showed an antimicrobial
effect on S. aureus, L. monocytogenes, and E. coli strains that is strongly correlated to the
results of Eshani et al. [12], which demonstrated a significant antimicrobial effect of DMEO
against the mentioned bacteria. Notably, the obtained max of 40 mm was registered for
all the tested bacteria in the case of DMEO, while this value for the tested DMH was
lower. Moreover, the inhibition zones of both DMEO and DMH were even higher than
that in the positive control, i.e., cefotaxime and clavulanic acid combination, indicating
the significant potential of using the DMEO and DMH as natural ingredients in various
products to improve microbial antibiotic resistance. To the best of our knowledge, the high
antimicrobial performance of DMH has not been previously reported. In addition to the
antibacterial effect, several scientific groups reported antifungal activity of DMEO [10,67,68]
which did not correlate with the results of this research.

Additional observation can be directed to the fact that all four sensitive bacteria
represent common pathogenic bacteria that cause foodborne diseases [69], while alimentary
infection and intoxications caused by these pathogens represent a growing public health
problem [70]. Due to the mentioned facts, the obtained results are promising in view of
finding alternative agents with rapid biocide effect for the food or packaging production.
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4. Materials and Methods
4.1. Plant Material

D. moldavica was grown during the 2021 cropping season in the Institute of Field and
Vegetable Crops Novi Sad (IFVCNS), experimental fields in Bački Petrovac (Vojvodina
Province, North Serbia) on gleyed calcareous chernozem soil type. The species were confirmed
by Milica Rat, research associate at the botanical collection, and deposited under the
voucher number 2-1513 at the Herbarium BUNS (Faculty of Sciences, University of Novi
Sad). The previous crop was barley. Granular mineral fertilizer (70 kg NPK in formulation
15:15:15) was applied in the previous fall prior to the fall plowing and disking.

The seeds were sown in pots in a greenhouse, in March, and the seedlings were
transplanted at the end of April in an experimental plot of 70 m × 10 m, with a 70 cm
spacing between rows and 50 cm between plants. During the vegetation period, only hand
weeding and hoeing were performed. Plants were harvested in August, at full bloom, by
cutting the plants at 5 cm above the ground, dried in a flat-bed solar dryer at temperatures
less than 40 ◦C for two days, and the essential oil was isolated via steam distillation.

4.2. Essential Oil Isolation

The steam distillation of the dried aerial plant parts of D. moldavica was performed
in a semi-industrial distillation unit at IFVCNS [71]. Briefly, 50 kg of dried biomass was
put in the distillation vessel (0.8 m3), which was supplied with hot dry steam from a
separate steam generator. After 20 min, a condensate (essential oil and condensed water)
started to accumulate in the glass Florentine flask. After 4 h of distillation, the essential
oil and the hydrolate were separated: the DMEO was decanted from the aqueous layer,
dried over anhydrous sodium sulfate, while the DMH was purified by filtration using
MN 651/120 filter paper. The essential oil yield was 0.65% in dried biomass. In order to
prepare the DMH sample for analysis of volatile compounds, 400 mL of hydrolate were
extracted by dichloromethane via a Likens–Nickerson apparatus for 2 h.

4.3. Analysis of Volatile Compounds

Gas chromatograph (Agilent 7890A) with two detectors, flame ionization (FID) and mass se-
lective (Agilent 5975C), and non-polar capillary column HP-5MS (30 m × 0.25 mm × 0.25 µm)
were used for the analysis of DMEO and DMH. The operating conditions were the same as
in our previous works [58,71]. Identification of the components was conducted according
to their linear retention indices (RI), and comparison with mass spectral libraries (Adams
ver. 4, Wiley ver. 5, and NIST ver. 17). The relative abundance of each detected compound
was calculated from GC/FID chromatograms as a percentage area of each peak (only
identified compounds are shown).

4.4. In vitro Assessment of Antioxidant Activity

The potential antioxidant activity of DMEO and DMH were assessed using five
common in vitro antioxidant assays. The tests were performed with DMEO dissolved in
methanol at the concentration of 250 mg/mL. For all assays, the Trolox equivalents were
used for expression of antioxidant activities as µmol per 100 mL (µmolTE/100 mL). The
DMH was tested in its original eluted form after filtration.

4.4.1. DPPH• (2,2-diphenyl-1-picrylhydrazyl)

The DPPH assay was performed according to Aborus et al. [72]. Briefly, 250 µL DPPH•

solution in methanol (0.89 mM) was mixed with 10 µL of the sample in a microplate well
and left in the dark at ambient temperature for 50 min. Absorbance was measured at
515 nm, and methanol was used as a blank.

4.4.2. ABTS•+ (2,2′-azino-bis-3-ethylbenzothiazoline-6-sulphonic Acid)

The ABTS•+ radical scavenging assay was evaluated employing the method according
to Aborus et al. [72]. The absorbances of 250 µL activated ABTS•+ (with MnO2), before and
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35 min (incubated at 25 ◦C) after the addition of 2 µL of juice were measured at 414 nm.
Water was used as blank.

4.4.3. SOA (Superoxide Anion)

Superoxide anion radical scavenging activity was determined by the nitroblue tetra-
zolium reduction method, adapted for a 96-well microplate [73]. An amount of 50 µL of
each sample solution dissolved in phosphate buffer, or 50 µL of buffer (blank test), was
mixed with 50 µL of 166 mM nicotinamide adenine dinucleotide (NADH), 150 µL of 43 mM
nitrotetrazolium blue (NBT), and 50 µL of phenazine methosulfate (PMS) in triplicate. The
tests were conducted at room temperature with two readings of 560 nm, being the initial
when PMS is added, and the final after 2 min.

4.4.4. RP (Reducing Power)

Reducing power (RP) was determined by the method of Oyaizu [74] adapted for a
96-well microplate. In brief, a 25 µL sample or 25 µL water (blank test), 25 µL sodium
phosphate buffer (pH = 6.6), and 25 µL of 1% potassium iron(III) cyanide were mixed and
incubated in a water bath for 20 min at 50 ◦C. After cooling, 25 µL of 10% trichloroacetic
acid was added and solutions were centrifuged at 2470× g for 10 min. After centrifugation,
50 µL of supernatant was mixed with 50 µL of distilled water and 10 µL of 0.1% iron(III)
chloride in the microplate. Absorbances were measured immediately at 700 nm.

4.4.5. BCB (β-Carotene Bleaching)

The β-carotene bleaching capacity of samples was evaluated by the β-carotene linoleate
model system of Al-Saikhan et al. [75]. The absorbances of all the samples were taken at
470 nm at zero time and after 180 min, while during this time the microplate was incubated
at 50 ◦C.

4.5. In Vitro Assessment of the Antimicrobial Activity

Observation of the antimicrobial activity of the DMEO and DMH was performed
using references strains of bacteria Bacillus cereus, Escherichia coli, Listeria monocytogenes,
Pseudomonas aeruginosa, Salmonella Typhimurium, and Staphylococcus aureus, as well as
referent representatives of yeasts and fungi (Aspergillus brasiliensis, Candida albicans, and
Saccharomyces cerevisiae). All tested strains were obtained from the American Type Culture
Collection (ATCC).

4.5.1. Screening of Antimicrobial Effect of DMEO and DMH (Disk Diffusion Method)

Evaluation of antimicrobial activity of the DMEO and DMH was completed by the
disk-diffusion method. As Micić et al. [76] reported in detail, the nutrient medium (Müller–
Hinton agar or Sobouraud maltose agar) was inoculated with microbial suspensions (ap-
prox. 6 log CFU/mL) and the samples (15 µL) were applied onto three sterile cellulose discs.
Bacteria were grown on Müller–Hinton agar (HiMedia, Mumbai, India) at 37 ◦C for 24 h
and at 30 ◦C (B. cereus) for 18 h. Yeast and fungi were grown on Sabouraud maltose agar
(HiMedia, Mumbai, India) at 25 ◦C for 48 h. Cells were suspended in a sterile 0.9% NaCl
solution. As a negative control, sterile distilled water was used, while positive controls
were commercially available antibiotics chloramphenicol and tetracycline (Sigma-Aldrich,
St. Louis, MO, USA) as well as actidione (Biochemica, Billingham, U.K.). The obtained
results were interpreted as follows: sensitive (diameter of inhibition zone above 26 mm),
intermediary (inhibition zone 22–26 mm), and resistance (inhibition zone below 22 mm).

4.5.2. Minimal Inhibitory Concentration (MIC)

The MIC was evaluated for all bacteria, yeast, and fungi that are sensitive to the
DMEO and DMH using the microdilution method labeled by Pavlić et al. [77]. The initial
concentration was defined as 100%, while other concentrations were prepared using succes-
sive dilutions (100–0.39%) using dimethyl sulfoxide (50 mg/mL) for essential oil or sterile
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distilled water for hydrolate. The used dissolvents were inert for all tested microorganisms
and did not have a biocide effect on bacterial and yeast growth [66]. MIC represents the
lowest concentration of antimicrobial agents that, under defined in vitro conditions, pre-
vents the appearance of visible growth of a microorganism within a defined period of time.
MIC is calculated based on the numbers of cells of positive control and treated samples
with DMEO or DMH. The test microtiter plate had a positive control (inoculated media
without DMEO or DMH) and a negative control (100 µL of medium mixed with 100 µL of
DMEO or DMH).

4.5.3. Assessment of Antimicrobial Activity Using a Time-Kill Procedure

The pharmacodynamics potential of antimicrobial activity was followed using moni-
toring of the time-kill kinetics as reported by Ferro et al. [78]. All sensitive bacteria (approx.
6 log CFU/mL) were tested during contact time with 1, 2, and 4-time MIC concentrations
in several samples times (0 h, 2 h, 3 h, 4 h, 5 h, 6 h, 12 h, and 24 h of incubation for bac-
teria at 37 ◦C). An inoculated medium without the sample was positive control, while a
non-inoculated medium was a blank. The four-parameter sigmoidal model established by
Romano et al. [79] performed kinetic modeling.

4.6. Statistical Analyses

The collected data were processed statistically using the software package STATISTICA
10.0 (StatSoft Inc., Tulsa, OK, USA). All analyses were performed in three replicates. The
obtained results were expressed as the mean value with standard deviation (SD). Analysis
of variance (ANOVA) with Tukey’s HSD post hoc test for comparison of the sample means
were used to explore the variations of parameters. All observed samples were checked for
variance equality (using Levene’s test) and normal distribution (using Shapiro–Wilk’s test).

5. Conclusions

Expressed needs for natural materials and phytochemicals, as well as needs to find
antimicrobial substances that are substitutes for antibiotics, inspire researchers to look for
new sources of these compounds. Herbs, such as D. moldavica, could be important raw
materials in the pharmaceutical and food industry. The main compounds in the essential oil
were geranyl acetate, geranial, and neral, while in the hydrolate these were geranial, neral,
and geraniol. Geranyl acetate, a monoterpene, is commonly used at an industrial level in a
wide range of products such as powders, soaps, perfumes, as well as flavoring agents, due
to its intensely fruity and floral aroma. Due to its low solubility in water, it was not detected
in the hydrolate. Citral (a mixture of two monoterpene aldehydes—geranial and neral) is
widely used as a flavoring agent in food, beverage, and cosmetic products. Geraniol is a
commercially important terpene alcohol used in the food, fragrance, and cosmetic industry,
as well as insecticidal and repellent compounds in pesticides and household products.
D. moldavica essential oil (DMEO) and hydrolate (DMH) as significant sources of these
compounds are prospective raw materials for many purposes.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/plants11070941/s1, Table S1: The “goodness of fit” kinetics
models; Figure S1: GC-FID Chromatogram of Dracocephalum moldavica essential oil (DMEO); and
Figure S2: GC-FID Chromatogram of Dracocephalum moldavica hydrolate (DMH).
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