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Abstract: Weather, tillage, and fertilization are the major factors affecting the grain yield of field peas
(Pisum sativum L.). However, the impact of tillage and fertilization on yield is not well understood.
Therefore, this experiment was initiated in 1999. In this manuscript, we report the data recorded
during the period of 2011–2015 to quantify the impacts on yield. Field peas were planted in
seedbeds prepared through conventional tillage (CT)—moldboard ploughing to the depth of 0.22 m;
and minimum tillage (MT)—disking to the depth of 0.12 m. The crop received three fertilization
treatments, including zero fertilization (control); nitrogen, phosphorus and potassium (NPK) mineral
fertilization treatment; and NPK mineral fertilization plus the incorporation of pre-crop biomass.
Five years’ average data indicated the highest yield on fertilized treatments (2.85–2.98 t ha−1 vs.
2.66 t ha−1) regardless of the tillage. When comparing the yield of fertilized treatments, the yield under
CT (2.98 t ha−1) was significantly higher than that of MT (2.85 t ha−1). However, on non-fertilized
treatments (less fertile plots), a higher yield was recorded under MT (2.71 t ha−1) compared with
CT (2.40 t ha−1). Overall, the results of this study suggest that fertilizer application together with
incorporation of the above-ground biomass of the previous crop may help sustain pea grain yield.

Keywords: conventional tillage; fertilization; field pea; minimum tillage; soil quality; yield

1. Introduction

Pulses or legumes have an irreplaceable function in sustainable crop production systems.
The addition of field peas (Pisum sativum L.) in cereal-dominated crop rotations provides several
long-term agronomic and ecological benefits and contributes to the sustainability of the system [1].
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Field pea has a good pre-crop value for cereals and reduces the inputs of nitrogen (N) fertilizers due to
its biologic fixation capacity [2]. The application of inorganic N fertilizer is not generally required for
peas, but the early application of small quantities of N is recommended in soil with low N [3].

Phosphorus (P) is required for pea growth and biological nitrogen fixation. The application of
30–35 kg ha−1 P2O5 and 50 kg ha−1 K is sufficient to meet the crop requirements [4]. Peas also provide
high-quality protein for human and animal nutrition [5]. In 2017, a total of 8.14 m ha of field peas
was harvested globally with the top producers being Canada, Russia, China, India, and the United
States [6]. Despite all the benefits, legume/pulse areas in central Europe have been declining for a long
time. The lower yield and great dependence on environmental stress conditions (e.g., temperature
extremes, precipitation patterns, and water stress conditions) are the main causes of farmers’ lack
of interest in legume/pulse cultivation, which has a negative impact on the sustainability aspects of
cultivation systems. The yield instability in peas is affected by many biotic and abiotic factors [7].

Farmers are also concerned with the greater yield variability, poor competitiveness with weeds,
and harvesting difficulties [8]. Despite this, the pea is well adapted to a wide range of climates,
from semiarid to temperate maritime. In central and northern Europe, peas are generally sown in
spring, whereas, in southern Europe they are mostly sown in mid-November. In northern Europe,
autumn sowing is avoided due to the greater risk of frost damage during flowering. Grain legumes
are currently underrepresented in European agriculture and produced on only 1.5% of the arable
land compared with 14.5% on a worldwide basis [9]. The pea cropping intensity decreased over the
last two decades in the central European region. For the promotion of field pea crop production,
it is important to find strategies for improving pea yields, as it is an important crop for sustainable
agricultural production systems.

Soil organic matter (SOM) acts as a binding agent for forming soil stable aggregates and improves
the soil water holding capacity [10]. The input of SOM and its interaction with cultivation and mineral
fertilization may improve the yield performance of field peas [11]. Studies on the production potential
of pea genotypes, N balance, pre-crop effects [12], and the effect of different potassium fertilization
rates on the yield and N uptake by field peas [13] are available. The influence of tillage systems
on the productivity of field peas [14] is also well known. However, the impact of fertilization and
tillage practices on pea yield and soil quality traits in central Europe, over multiple years has not been
investigated and not understood.

For this study, we hypothesized that the grain yield of field peas could be improved by the
incorporation of aboveground biomass under conventional (CT) or minimum (MT) tillage. The aim
of this study was to comparatively assess the impact of mineral fertilizers and the incorporation of
aboveground biomass of growing crops under conventional and minimum tillage on the yield of peas
in the agroclimatic conditions of western Slovakia.

2. Materials and Methods

2.1. Site Description

Field experiments were conducted in 2011–2015 at the experimental station of the Slovak University
of Agriculture in Nitra (Nitra, Slovakia: 48◦19′ N and 18◦09′ E; 175–200 m). The soil was classified as a
Haplic Luvisol. The particle-size distribution (top 20 cm) was 360.4 g kg−1 of sand, 488.3 g kg−1 of silt,
and 151.3 g kg−1 of clay. The bulk density was in the range of 1.5–1.68 g cm−3. The soil carbon content
was 1.29%, while the cation exchange capacity was 147.18 mmol kg−1. On average, the soil pH was
6.96 (0–20 cm).

2.2. Experimental Treatments and Experimental Design

This experiment began in 1996 and lasted until 2015 without changing the arrangement of
the treatment factors indicated below. However, in this manuscript, we report yields during the
period of 2011–2015. The field pea was grown in a crop rotation sequence as follows: red clover
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(Trifolium pratense L.); winter wheat (Triticum aestivum L.); field pea (Pisum sativum L.); maize (Zea mays L.);
and spring barley (Hordeum vulgare L.).

Randomized block design, in factorial arrangement, with three replications was used. The two
tillage systems were the conventional tillage CT—moldboard ploughing to the depth of 0.22 m,
and minimum tillage MT—disking to the depth of 0.12 m. The three fertilization treatments were:
(F1) zero fertilization as a control treatment; (F2) NPK mineral fertilization treatment; and (F3) NPK
mineral fertilization and the incorporation of aboveground biomass of growing crops. In the fertilization
treatments, mineral fertilizers in the amount of 30 kg ha P (as superphosphate) and 40 kg ha K (as
potassium chloride) were applied by primary tillage in autumn and 30 kg of N in the form of calcium
ammonium nitrate was applied before sowing.

Tillage was performed between October and the first week of November under appropriate soil
moisture conditions. Prior to primary tillage treatments, the aboveground crop biomass was crushed
or chopped using a Universal Straw Chopper TSN 200—Cabe. The semi-leafless pea cultivar Audit
(Limagrain Europe S.A.) was sown on 16 March in 2011, 2012, and 2015, and 25 March in 2013 and
5 March in 2014 using a seed rate of 220 kg ha−1 with a 125 mm distance between rows and an 80 mm
distance in the rows. To assess the legume crop response at the full ripening plant stage, the grain
yield was determined for each sub-plot using a clean weight basis corrected to 14% moisture. The pea
crop was harvested on 29 June 2011, 2 July 2012, 22 July 2013, 7 July 2014, and 6 July 2015 by a combine
harvester (CLAAS, Serbia) with a 2 m cutter bar.

2.3. Chemical Analysis and Sample Preparation

Every spring during March–April, the soil was sampled to the depth of 0.20 m from five different
locations of the treatments for water-stable aggregate (WSA) determination and with three replications
for soil analysis of the fertilization and tillage treatments. The soil samples were mixed, air dried,
and ground before the chemical analyses. The soil samples for WSA were also pre-sieved over sieves
of a specific size. The size fraction of water stable aggregates (WSA) from 0.5–3 mm were further
analyzed. In the size fraction of WSA organic carbon by Tyurin in the modification of Nikitin [15] and
labile carbon content (CL) according to Loginow et al. [16] were detected.

The soil carbon sequestration capacity (CSC) was quantified using the equation CSC =
Corg−CL

CL
,

where Corg is the content of organic carbon (mg 100 g−1) in a specific fraction of WSA, and CL is
the content of labile carbon (mg/100 g) in the same fraction of WSA. The contents of the available
P, K, and Mg were determined using the Mehlich 3 extraction procedure [17]. The content of P was
determined using the colorimetric method (Spectrophotometer Model: SP-830 PLUS Metertech Inc.),
K by flame photometry (PFP7—Jenway), and Mg by atomic absorption spectrophotometry (AAS
SensAA Dual by GBC Scientific Equation).

2.4. Statistical Analysis

Prior to the statistical analysis, the data of the yield of the pea grains were checked for normal
distribution using probability P-P plots and the Shapiro-Wilk test. An analysis of variance was used to
analyze the impact of the tillage and fertilization treatments under different weather conditions of the
evaluated years on the grain yield and water stable aggregates. The Fisher post-hoc test at the p = 0.05
level and Bartlett’s, Cochran’s, and Hartley’s test for the equality of variance were performed using the
Statistica 10 software (StatSoft Inc., Tulsa, OK, USA).

3. Results

3.1. Weather Conditions

The growing years of 2011–2015 created different temperature and humidity conditions, which were
reflected in the yield and quality of peas. Predominantly higher temperature values compared to the
standard climatological normal (1961–1990) were noted in March and April Figure 1), of which March
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2012 was above normal (+2.6 ◦C) and March 2014 was extraordinary above normal (+4.3 ◦C). Only the
temperature in March 2013 was below normal (−2.3 ◦C). In April, above normal temperatures were
recorded in 2011 (+2.6 ◦C) and in 2014 (+2 ◦C). Except for the temperature in May 2012 (+1.5 ◦C),
the May temperatures in the other four evaluated years were completely balanced in the range of
15.1–15.2 ◦C (Figure 1).
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Figure 1. The average monthly air temperature (a) and total precipitation (b) during the crop growing
season at the experimental site. The average July air temperatures were calculated for the date of the
pea harvest. Source: Weather station of the Slovak University of Agriculture in Nitra, located on the
experimental field.

June was generally characterized by a lack of precipitation compared to the standard climatological
normal (1961–1990). The sum of the precipitation at the beginning of spring in 2011 and 2012 (March)
was extraordinarily below normal but above normal in 2013. Only in May 2012, the precipitation was
very below normal (−43 mm). The precipitation in April 2011, 2012, and 2013 was below normal with
deficit of 14–16 mm [18].
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3.2. Soil Conditions

During the evaluation period of 2011–2015, the fertilized plots were characterized by the average
content of available P 90 mg kg−1, K 283 mg kg−1, and Mg 245 mg kg−1. The soil carbon content of the
fertilized plots varied in the range of 1.10% to 1.26% (Table 1). The content of organic carbon with zero
treatments varied in the narrow interval of 1% to 1.08% as an average for both tillage treatments.

Table 1. Content of the available nutrients and soil carbon content in fertilized treatments.

Year Treatment
Content of the Available Macronutrients in the Soil (mg kg−1)

Corg in %
P K Mg

2011 CT F2 87 225 286 1.12
CT F3 82 250 298 1.15
MT F2 79 275 299 1.15
MT F3 80 265 298 1.21

2012 CT F2 80 225 214 1.12
CT F3 75 275 232 1.21
MT F2 79 250 215 1.23
MT F3 82 275 214 1.26

2013 CT F2 113 280 198 1.16
CT F3 120 260 237 1.17
MT F2 88 275 225 1.23
MT F3 100 290 220 1.21

2014 CT F2 78 300 226 1.13
CT F3 83 320 225 1.10
MT F2 100 340 269 1.14
MT F3 103 320 261 1.15

2015 CT F2 108 340 226 1.01
CT F3 95 300 225 1.12
MT F2 78 280 269 1.15
MT F3 100 320 261 1.12

CT—conventional tillage (moldboard ploughing); MT—minimum tillage (disking); F1—unfertilized plot; F2—NPK
mineral fertilization treatment; F3—NPK mineral fertilization and precrop aboveground biomass incorporation;
and Corg—soil organic carbon.

The effect of fertilization and tillage treatments on the carbon sequestration capacity of the selected
size of water-stable macro-aggregates is documented in Table 2. Tillage had a significant effect on the
size fraction of WS > 2 mm. The highest significant carbon sequestration capacity value was in the
2–3 mm size fraction under the MT tillage treatment. There was also a significantly higher level of
WSA was in the size fraction of 2–3 mm of WTA under minimum tillage (disking). No significant
differences in the carbon sequestration capacity were found between the fertilization treatments in any
of the evaluated fractions.

Table 2. The carbon sequestration capacity of water-stable aggregates under the tillage and
fertilization treatments.

WSA (mm) Tillage Treatments Fertilization Treatments

CT MT F1 F2 F3
0.5–1 5.54 a 5.47 a 5.26 a 5.98 a 5.45 a

1–2 5.98 a 5.92 a 5.90 a 5.25 a 5.69 a

2–3 6.03 a 6.34 b 6.00 a 5.13 a 6.04 a

Corg in WSA 1.20% 1.29% 1.24% 1.21% 1.28%

CT—conventional tillage (moldboard ploughing); MT—minimum tillage (disking); F1 unfertilized plot; F2—NPK
mineral fertilization treatments; F3—NPK mineral fertilization and precrop aboveground biomass incorporation;
and WSA water-stable macro-aggregate. Different letters refer to significant differences between columns.
The treatment means were significantly different at p < 0.05.
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3.3. Pea Grain Yield Factors

The year conditions and fertilization treatment explained the main part of the variation for the
grain yield. The interaction of tillage, fertilization, and year conditions was another important source
of variation (Table 3). The interaction of tillage or fertilization with the year conditions demonstrated a
higher source of variation than the single effects of tillage or fertilization.

Table 3. Analysis of variance for the influence of tillage and fertilization on the grain yield of field peas
over 2011–2015.

Source of Variation Sum of Squares Degree of Freedom Mean Squares F-Ratio p-Value

Tillage (T) 0.080 1 0.08 7.82 0.013
Fertilization (F) 1.585 2 0.79 77.72 0.000

Year (Y) 45.013 4 11.25 1103.34 0.000
T × F 0.306 2 0.15 15.01 0.000
T × Y 2.137 4 0.53 52.38 0.000
F × Y 2.454 8 0.31 30.07 0.000

T × F × Y 2.877 8 0.36 35.26 0.000

The grain yield varied between years and fertilization treatments. During the trial period,
the average yield of peas was 2.83 t ha−1. In 2012 and 2013, less suitable growing conditions with an
average yield of 1.93–2.09 t ha−1 were recorded (Table 4). In the driest year, 2012, a significantly higher
pea seed yield was found on fertilization treatments under CT without a significant difference between
the fertilization levels (CTF2, CTF3: 2.30 t ha−1, 2.14 t ha−1) compared to the pea yield at plots under
minimum tillage (1.57 t ha−1, 1.76, t ha−1).

Table 4. Influence of tillage and fertilization on the grain yield of field peas during 2011–2015.

Years
No Fertilizer (F1) NPK Mineral

Fertilizers (F2)

NPK Mineral Fertilization +
Pre-Crop Aboveground

Biomass Incorporation (F3)
Mean (Years)

CT MT CT MT CT MT

2011 3.00 f 3.12 f,g 3.13 f–h 3.38 j 3.56 k 3.39 j,k 3.26C
2012 1.85 b,c 1.94 c 2.30 d 1.57 a 2.14 d 1.76 b 1.93A
2013 1.44 a 1.87 bc 1.76 b 2.56 e 2.72 e 2.21 d 2.09A
2014 3.30 h–j 3.16 f–i 3.06 f,g 3.18 g–i 2.56 e 3.30 h–j 3.09B
2015 3.47 j,k 3.44 j,k 4.2 m 3.33 i,j 4.4 n 3.78 l 3.77E

Means (Fertilizer) 2.66A 2.85B 2.98C

CT—conventional tillage (moldboard ploughing); MT—minimum tillage (disking). Different letters refer to
significant differences between treatments (small letter) and fertilization and year respectively (capital letter).

In 2015, agro-environmental conditions enabled the higher expression of the pea yield potential at
the average level of 3.77 t ha−1. In this year, the yield of pea seeds on plots without any fertilization was
3.47 t ha−1 and 3.44 t ha−1 under both tillage treatments (CT and MT). A significant increase in the pea
yield compared to the unfertilized plots was recorded for both fertilization treatments in combination
with moldboard ploughing (4.2–4.4 t ha−1), with highest significant seed yield on the treatments with
combined fertilization of industrial fertilizers and pre-crop biomass incorporation (CTF3).

On average over 5 years, both fertilization treatments achieved significantly higher yields
compared to the unfertilized control by 7% to 12% (Table 4). Field peas grown on plots with CT and
MT had a similar yield expressed in terms of the 5 -year average of grain yield per hectare (2.86 t ha−1

and 2.80 t ha−1), but the yield of peas was more varied by the interaction of tillage and the year
conditions (Figure 2).
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Figure 2. The field pea grain yield under different tillage practices during 2011–2015. CT—conventional
tillage (moldboard ploughing); MT—minimum tillage (disking). Bars marked with different letters are
significantly different at p < 0.05.

In the least fertile growing seasons of the years 2012 and 2013, the yield of pea grain was below
2.21 t ha−1 under both tillage treatments (Figure 2). The pea grain yield under different tillage practices
indicates the higher magnitude of yield between tillage treatments in the most fertile year of 2015
in favor of CT in comparison to MT. Overall, the lowest yield was achieved under MT in the driest
growing conditions of the year 2012. On the other hand, we recorded a higher yield on plots under
MT in 2013 and 2014. In 2011, the effect of tillage cultivation did not affect the pea yield. Only the
ploughing factor itself, did not have a uniform impact like fertilization (see below).

The average yield of field peas among fertilization treatments varied from 1.65 to 2.46 t ha−1 during
2012–2013. In more favorable growing conditions of the years 2011, 2014, and 2015, the significantly
higher yield in range of 2.93 to 4.09 t ha−1 was noted (Figure 3).
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In the observed period of 2011–2015, the pea harvest was significantly influenced by fertilization in
four growing seasons. In the dry weather conditions of the year 2012, an average yield of 1.93 t ha−1 was
noted without any observed effect of fertilization. In 2011, 2013, and 2015, the pea seed yield increased
significantly according to the increasing nutrient inputs F1 < F2 < F3. The growing year 2014 went
beyond this trend because the fertilized treatments did not exceed the yield at the unfertilized control.

When looking for the best combination of fertilization management and tillage practices, it is
advisable to evaluate the unfertilized control separately (Figure 4).
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Figure 4. The yield of field pea grains under different tillage and fertilization management during
2011–2015. Vertical bars denote 0.95 confidence intervals; CT—conventional tillage (moldboard
ploughing); MT—minimum tillage (disking); F1—unfertilized plot; F2—NPK mineral fertilization
treatment; F3—NPK mineral fertilization and precrop aboveground biomass incorporation; Different
letters refer to significant differences between treatments.

The average data of the evaluated treatments significantly indicates the highest yield on fertilized
plots (F2 and F3) regardless of the tillage methods. When comparing the yield on fertilized plots,
the yield under conventional tillage (F2, F3) was significantly higher with comparison to MT. As opposed
to that on non-fertilized treatments, there were significantly higher yields under MT. An increasing
pattern of seed yield (F1 < F2 < F3) was found on plots under CT with grain yields in the large range of
2.61–3.08 t ha−1. A similar pattern was also noted under MT.

4. Discussion

In central Europe, field peas are typically grown in non-irrigated fields. High temperatures
combined with a lack of precipitation mainly in coincidences with the period of grain yield determination
was a significant factor of the growing season determining the grain yield of peas. According to our
results, the minimum precipitation in May 2012 (15 mm) including 40-day periods without precipitation
from 5 May to 14 June contributed to the lowest pea seed yield (1.93 t ha−1) on average for all treatments
and years.

March 2013 was one of the coldest months in our climatological records, and high precipitation
delayed the crop sowing to 25 March. Research demonstrated that the precipitation status in May,
during the growing stage of flowering and development of seeds, is decisive for the yield of peas grown
in non-irrigated fields [19]. Similarly, Gantner et al. [20] showed that precipitation from February
to May had the highest positive correlation with the average location yields. Due to the sowing
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delay, the canopy of peas reached the zone of higher June and July temperatures accompanied by dry
conditions in the period of development of fruits, which had a negative effect on the yield formation.

Similarly, Payne et al. [21] indicated that the sum of the maximum daily temperatures above
25.6 ◦C during the reproductive phases of the crop had a negative effect on the yield. The critical period
of the grain yield determination is useful for maximizing the grain yield via a proper management
strategy. Considering a bottom line of a 10% reduction in grain yield, Sandańa and Calderini [22]
established the critical periods for grain determination between 10 days before R1 and 50 and 40 days
after R1. This period, according to Knott [23], corresponds to the flower bud development and seed-set
stages in peas. Several other cereals and legume grain crops are also known to be sensitive to high
temperature stress during the critical stages of floral bud development and seed-set [24–26]. On the
other hand, a lack of precipitation in June did not have an important influence on the field pea yield.
In 2015, only 10.2 mm of precipitation occurred in June, but field pea reached the highest significant
yield (3.77 t ha−1) of the whole evaluated period.

The yield stability of field grain growing in rainfed field conditions and increasing production
costs are the main problems of the decreasing crop area in central Europe [14]. Whether farmers
choose to grow more legumes will depend on the development of supply chains as well as technical
improvements of grain legume production, such as management development to improve the yield
stability [9]. Although year conditions explain yield variability, there is still a need to examine if other
agrotechnical factors can contribute to higher yields of field peas. Soil cultivation and fertilization is a
fundamental agronomic practice directly affecting the soil environment for growing crops.

Water-stable macro-aggregates are the most valuable part of the ploughing layer. Such an
aggregation process provides physical protection to SOM by isolating it from decomposers [27],
thus, preventing the decay of soil organic carbon. Therefore, the evaluation of the ability of carbon
sequestration under CT and MT and different fertilization treatments may be one of the benefits of
suitable tillage and fertilization management of peas. The size fraction from 0.5 mm to 3 mm included
the most agronomically valuable macro-aggregates (WSA ma 0.5–3 mm). Researchers determined that
reduced tillage of the soil positively influenced both the WSA and the yield of the crops grown [28].
The highest value of the carbon sequestration capacity was in the 2–3 mm size fraction of water-stable
macro-aggregates (WSAma) under MT tillage. The range of the organic carbon content was in a
narrow interval.

The pea reaction to various tillage conditions allows researchers to find optimal methods to reduce
the tillage and conservation tillage [29]. Nitrogen fertilizer is not generally required; however, starter N
applied early, prior to the onset of N fixation, was recommended for field pea production when soils
are low in N [3]. Under these conditions in central Europe, the addition of 40 kg ha−1 of N with
mineral fertilizer is recommended to provide N nutrition of the pea plant until nodulation becomes
fully effective [30]. A substantial effect of N nutrition, assessed by the N nutrition index on the grain
number, was observed [19].

The positive effect of P fertilization was reported by many studies [31,32]. Relatively small doses
of mineral fertilization and mineral fertilization combined with the incorporation of pre crop biomass
significantly increased the yield of grain peas by 130–320 kg ha−1 compared to the unfertilized control.
In three of the five evaluated years, the trend (F1 < F2 < F3) of the impact of the evaluated fertilization
treatments on the yield of peas was confirmed. The applied rates of N, P, and K were designed with
regard to lower inputs and low environmental load, which reduced the use of the full fertilization
potential in relation to the crop.

One of the most limiting nutrients for field peas is P because this legume crop requires significant
inputs for nodule formation. Therefore, the P use efficiency should be considered important for
sustainable agriculture [6], where one of the goals is decreasing the reliance on fertilizers and
maximizing productivity. The response of the seed yield to P application is related to the content of
extractable P in the soil. Karamanos et al. [31] reported a significant increase in the yield of peas as
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response to 19.5 kg ha−1 P application on soils with a lower content of extractable P. There was no
significant yield increase in the trials that contained greater than 10 mg kg−1 extractable P in the soil.

Similarly, in our field trial, a good P supply was recorded during all periods of the field trial in a
range of 75–88 mg kg−1 dry soil. Symanowicz et al. [13] reported the highest pea yield on the plots at
a dose of 124 kg ha−1 K on the soil with a low K and high soil P supply. Such an influence was not
recorded in the study by Bujak and Frant [33], were K was applied at a rate of 66–100 kg ha−1 on soil
with high content of available K. In our experiments, there was a good soil supply of K in the range of
250–320 mg kg−1 of soil during the observed period.

Field peas grown on fertile soils are not very dependent on N doses except for during the initial
stage of development. In agroclimatic conditions in central Europe, the field pea N fixation ranged
from 53 to 75 kg ha−1, corresponding to 42% to 50% of the N [10]. Despite a good soil supply of P and
K, the effect of fertilization on pea yields was significant. Despite the relatively low doses of industrial
fertilizers, we found a yield increase of 188 kg ha−1 over the control on plots with the application of
mineral fertilizers and 323 kg ha−1 over the control on plots with combined doses of mineral fertilizers
and the incorporation of aboveground biomass. The positive effect of combined fertilization was
well manifested in the most fertile year of 2015 in both tillage methods. In the case of treatments
with the application of only industrial fertilizers, there was a significantly better treatment with CT in
comparison with MT in the favorable year conditions of 2015.

The pea yield in both tillage practices (CT and MT) produced about the same yields in the narrow
range of 2.85–2.98 t ha−1 during 2011–2015; however, the yield of peas significantly differed by the
interaction of the tillage and year condition. The average 5-year data indicated that pea cultivation
with minimal tillage was possible. On plots under minimum tillage, the pea yield was 190 kg higher on
treatments with a long history of ploughing aboveground biomass (MTF3) compared to plots fertilized
only with industrial fertilizers (MTF2). However, in general, conventional tillage is recommended for
field peas and some legumes [34,35].

For a deeper analysis of the impact of tillage practices, we must understand the impact of tillage
separately on fertilized and non-fertilized plots (Figure 4). Non-fertilized (less fertile) plots achieved
significantly higher yield under MT practices. Conventional tillage created demonstrably better
growing conditions for realizing the production potential of peas in the interaction with fertilization
management (higher fertile). The highest pea yield was achieved on plots with mineral fertilization
and plowed pre-crop aboveground biomass (CTF3).

When evaluating fertilization treatments, we found a non-significant difference in the interactions
with CT and MT. However, the benefits of MT on water soluble aggregates improved the soil
quality in longer-term conditions. In addition, the benefits of MT on economics due to the lower
energy-use-associated benefits requires further key analysis to determine the full benefits of MT on the
yield, soil health, and profitability of the system.

5. Conclusions

The five years averaged data of the evaluated treatments significantly indicated the highest
yield of pea seeds on fertilized plots regardless of the tillage methods. When comparing the yield
of both fertilized treatments, the yield under CT was significantly higher with comparison to MT.
In contrast to the non-fertilized treatments, there were significantly higher yields under minimum
tillage. The highest value of the carbon sequestration capacity was in the 2–3 mm size fraction of
water-stable macro-aggregates (WSAma) under MT tillage. The larger benefits of MT on the soil quality
and yield stability of peas requires further evaluation. We recommend fertilizing peas with small
doses of mineral fertilizers with the incorporation of the above-ground biomass of the previous crop.
These measures can contribute to crop stabilization and the sustainability of the cultivation system.
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35. Kayan, N.; Kutlu, İ.; Ayter, N.G.; Adak, M.S. Effects of different tillage systems and soil residual nitrogen on
chickpea yield and yield components in rotation with wheat under dry farming areas. Int. J. Agric. Biol.
2017, 19, 517–522. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.2134/agronj2000.925933x
http://dx.doi.org/10.1016/j.eja.2012.02.009
http://dx.doi.org/10.1111/j.1744-7348.1987.tb01450.x
http://dx.doi.org/10.1016/j.fcr.2016.09.024
http://dx.doi.org/10.3389/fpls.2017.01658
http://www.ncbi.nlm.nih.gov/pubmed/29123532
http://dx.doi.org/10.3389/fpls.2018.01705
http://dx.doi.org/10.1111/j.1365-2486.2012.02665.x
http://dx.doi.org/10.17221/132/2014-SWR
http://dx.doi.org/10.1016/j.cropro.2014.07.017
http://dx.doi.org/10.1016/j.still.2018.09.006
http://dx.doi.org/10.4141/P02-110
http://dx.doi.org/10.1016/j.fcr.2016.12.020
http://dx.doi.org/10.2478/v10081-010-0003-3
http://dx.doi.org/10.17957/IJAB/15.0325
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Site Description 
	Experimental Treatments and Experimental Design 
	Chemical Analysis and Sample Preparation 
	Statistical Analysis 

	Results 
	Weather Conditions 
	Soil Conditions 
	Pea Grain Yield Factors 

	Discussion 
	Conclusions 
	References

