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The permanent need for efficient plant breeding comes from the increment of human 

population, which is projected to reach 9.7 million by 2050. Novel approaches could be 

used to reach these goals more rapidly, raising the question of efficiency, as well. Spike 

length is one of the important components of grain yield formation in wheat. The 

influence of individual plan traits is getting more important to grain yield formation per 

area unit in stressful growing conditions, which are increasingly present due to global 

climate changes. The objectives of the present research were three-fold: (i) to determine 

the influence of a genotype, environment and their interaction on spike length and to 

evaluate stability of the trait; (ii) to present cause-causing links on a graphical example; 

(iii) to transform a number of possibly correlated variables into a smaller number of 

uncorrelated variables called principal components. Samples were obtained from 96 

winter wheat cultivars grown in 2011/12 and 2012/13 on two locations. The wheat 

genotype population was profiled with 28 microsatellites. The ANOVA of the total 

phenotypic variation of the experiment shows that genotypes took the largest portion, 

followed by the influence of the GE interaction. Additional analysis of the GE interaction 

using the PCA analysis shows a statistical significance of the first two main components. 

In the conducted research, the dispersion of the points represents two subpopulations, but 



168                                                                                                             GENETIKA, Vol. 51, No1, 167-178, 2019 

the geographical origin could not explain the grouping of genotypes within the same, so 

the division into two groups was done on the basis of their lines of descent. 
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INTRODUCTION 

The constant need for efficient plant breeding comes from the increment of human 

population, which is projected to reach 9.7 million by 2050. Beside this, new environmental 

challenges, including climate change, energy efficiency and sustainability also require from 

breeding science to set specific goals. Novel approaches can be used to reach these goals more 

rapidly, but the question of efficiency is raised, as well. One of the main objectives of 

conventional breeding is lowering the variability within the genotype population, by diminishing 

genotype by environment interaction  for the traits of relevance which should be used in future 

crosses. Moreover, the influence of individual plan traits is getting more important to grain yield 

formation per area unit in stressful growing conditios, which are increasingly present due to 

global climate changes. Spike length is one of the important components of yield via grain yield 

per plant, and this is the source of assimilates closer to the caryopses. Spike structure has more 

benefits of utilizing illumination than the other parts of the plant and it will also stay green and 

functional for a longer time together with the awns. Because of these features, it contributes, on 

the average, 40-50% of the dry matter accumulated in the kernels (SHARMA, 2003). Plant height 

in wheat is a complex trait; its components include spike length and internode lengths (CUI et al., 

2011). Тhese traits are agronomically important for morphogenesis and grain yield formation in 

wheat.  

The general task is to identify all sources of phenotypic variance (ELEKHDAR et al., 

2017; KHAN et al., 2017). In the process of variation source identification, two different 

components need to be singled out, the additive component and the multivariate component. 

Having in mind a well-known fact that the total phenotypic variance can roughly be analysed 

into four sources of variation – the influence of the genotype, the influence of the environment, 

their mutual interaction, and error (agronomically unexplainable, hence not important, variation), 

it is necessary to analyse these sources of variation (KNAPP et al., 2017; KHAN et al., 2017). The 

additive effect of this variance consists of the first two variation sources (the genotype portion 

and the environment portion), while the multivariate part depends on their mutual interaction. 

ANOVA for spike length in this case explains the additive part of the total phenotypic 

variability, being an additive model, while the multivariate part remains shown in its entirety, 

only. GAUCH and ZOBEL (1996) have introduced AMMI Analysis (Additive Main Effects and 

Multiplicative Interaction), in order to additionally analyse the multivariate component. AMMI 

model contains ANOVA, but also disassembles and analyses GE interaction (MLADENOV et al., 

2016). This additional GEI  analysis could be done by Principle Component Analysis (PCA) 

(ANNICCHIARICO, 1997; SINGH et al., 2009; BANJAC et al., 2014; SOLONECHNYI et al., 2016; 

MOHAMMADI et al., 2017).  

The method based on the analysis of the multivariation of the phenotypic part of the 

experiment can also be transmitted to the part of the experiment carried out in the laboratory, 

especially when the molecular experiments are concerned. The PCoA method is designed to 

explore and visualize similarities or dissimilarities of data. It starts with a similarity matrix or 

dissimilarity matrix and assigns a location in a low-dimensional space to each item, e.g. as a 3D 

graphics. 
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The objectives of the present research were three-fold: (i) to determine the influence of 

a genotype, environment and their interaction on spike length and to evaluate stability of the 

trait; (ii) to present cause-causing links on a graphical example; (iii) to transform a number of 

possibly correlated variables into a smaller number of uncorrelated variables called principal 

components. 

MATERIALS AND METHODS 

Plant material and field experiment 

The grain samples were obtained from 96 winter wheat cultivars grown in 2011/12 and 

2012/13 on two locations: Novi Sad and Sremska Mitrovica (E1- Novi Sad 2012, E2 - Novi Sad 

2013, E3 - Sremska Mitrovica 2012, E4 - Sremska Mitrovica 2013). The wheat cultivars were 

planted in a randomized complete block design with four replications and all the cultivars are 

agronomically suitable for production in these locations (Tab. 1). Pedigrees and more 

information about used genotypes can be found in Mladenov et al., 2018. The sowing in both 

growing seasons was completed by the end of October, while the harvest was completed in the 

last ten days of June. The spike length was measured on each cultivar for each replication from 

the base of the spike to the tip, excluding awns.  

Determination the causal relationship between plant height, spike length, the number of 

grains per spike, 1000 kernel weight and the grain yield has been done and for this reason those 

traits will be introduced later in the manuscript, not in the sense of phenotypic analysis, but as a 

tool for indirect correlations and fulfilling broader image.  

 

Table 1. Used genotypes of winter wheat in two seasons (2011/2012 and 2012/2013) across two locations 

(Novi Sad and Sremska Mitrovica) 

No. Genotype Y.r. No. Genotype Y.r. No. Genotype Y.r. 

G1 Pesma 1995 G36 NS40 S 2006 G71 NS3-7289 Ком 

G2 Renesansa 1994 G37 Teodora 2006 G72 NS Pudarka 2013 

G3 Obrij 1983 G38 Etida 2006 G73 NS3-6767/2 Ком 

G4 NS rana 5 1991 G39 Isidora 2007 G74 Sava 1970 

G5 Pobeda 1990 G40 Gordana 2008 G75 Partizanka 1973 

G6 Evropa 90 1990 G41 Gora 2009 G76 NS rana 2 1975 

G7 Ljiljana 2000 G42 Biljana 2009 G77 Balkan 1979 

G8 Sonata 2000 G43 Natalija 2009 G78 Posavka 2 1979 

G9 Vila 2001 G44 NS Desetka 2010 G79 Jugoslavija 1980 

G10 Kantata 2001 G45 NS Nena 2010 G80 Lasta 1987 

G11 Cipovka 2002 G46 NS Dika 2010 G81 Rodna 1988 

G12 Dragana 2002 G47 NS Arabeska 2010 G82 Tamiš 1988 

G13 Jefimija 2003 G48 NS Artemida 2010 G83 Danica 1990 

G14 Balada 2003 G49 NS Emina 2010 G84 Proteinka 1990 

G15 Rapsodija 2003 G50 
NS 

Avangarda 
2010 G85 Rana niska 1990 

G16 Arija 2003 G51 NS Futura 2010 G86 Milica 1992 

G17 Simfonija 2003 G52 NS Ilina 2010 G87 Hejs 2 19 

G18 Simonida 2003 G53 NS Enigma 2010 G88 Divna 1994 

G19 Balerina 2003 G54 NS Tavita 2011 G89 Prima 1995 
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G20 Diva 2003 G55 NS 91/04 Kom G90 Tera 1995 

G21 Astra 2003 G56 NS 50/07 Kom G91 Tiha 1995 

G22 Helena 2004 G57 NS 269/08 Kom G92 Prva 1997 

G23 Oda 2004 G58 NS 48/08 Kom G93 Zlatka 1997 

G24 Milijana 2004 G59 NS3-6954 Kom G94 Mina 1997 

G25 Nirvana 2004 G60 NS3-6741 Kom G95 Delta 1998 

G26 Bambi 2004 G61 NS3-6926 Kom G96 Sonja 1998 

G27 Lana 2005 G62 NS 36/10 Kom 

G28 Zvezdana 2005 G63 NS 168/10 Kom 

G29 Janja 2005 G64 NS 55/10 Kom 

G30 Fundulea 4 1987  G65 NS 176/10 Kom 

G31 Bastijana 2005 G66 NS 128/10 Kom 

G32 Dama 2006 G67 NS 151/10 Kom 

G33 Srna 2006 G68 NS3-7106 Kom 

G34 Angelina 2006 G69 NS3-6706/2 Kom 

G35 Barbara 2006 G70 NS3-6939 Kom 

†No. number of genotype,  Y.r. -year of realest, Kom. -genotypes that still are in the National Commission for cultivar 

recognition 

 

Molecular experiment 

 The genomic DNA from all genotypes was isolated from fresh leaves using the CTAB 

protocol by DOYLE and DOYLE (1990). The wheat genotype population was profiled with 28 

microsatellites (data not shown). The additional cultivar called Chinese Spring was used as a 

positive control and it was placed on 87 spots, instead of the cultivar Heys 2. The microsatellites 

were positioned along almost all three genomes. Detail information about DNA manipulation 

can be found in MLADENOV et al., 2018. 

 

Statistical analyses 

 The genotype-by-environment (GE) interaction was tested using AMMI (Additive Main 

Effects and Multiplicative Interaction) analysis by ZOBEL et al. (1998). Data processing was 

performed in GenStat 9th Edition (trial ver.) VSN International Ltd. (www.vsn-intl.com). After 

the standardization of the data, the analyses of path coefficients were done in Microsoft Excel by 

AKINTUNDE (2012). The determination of the internal genetic structure was done by an additional 

analysis through the principal coordinate analysis (PCoA) by using an Excel add-in called 

GenAlex software (PEAKALL and SMOUSE, 2012).  

The marker trait associations were analyzed in the Tassel software, version 2.1. 

(Bradbury et al., 2007) using two models: GLM and MLM (YU et al., 2006). The Q matrix for 

further association analysis was determined based on the average value of three iterations of log 

probability of data obtained by the Structure software (PRITCHARD et al., 2000).  

 

RESULTS AND DISCUSSION 

The ANOVA for spike length of the total phenotypic variation of the experiment shows 

that genotypes took the largest portion of 45.49%, followed by the influence of the GE 

interaction (20.05%). The smallest portion in the overall variability of the spike length was taken 
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by agroecological environments (2.43%). All sources of variation showed high statistical 

significance in the variation of the experiment (Tab. 2). The uniformity of the investigated 

agroecological environments in terms of meteorological parameters (data not shown) and the 

basic soil properties contributed to this source of variation taking the smallest portion in relation 

to the other two observed sources. 

 

Table 2. The AMMI analysis of the variance in spike length for 94 genotypes of winter wheat (Triticum 

vulgare L.) and one genotype Т. spelta L. (Nirvana) and Т. compactum Host (Bambi) grown in two 

years (2011/2012 and 2012/2013) on two locations (Novi Sad and Sremska Mitrovica) 

Share of 

variation 

Degrees 

of 

freedom 

Sum of 

square 

Middle of 

square 

F 

value 

F 

table 

 

Share in 

total 

variation 

% 

     0,05 0,01  

Total 1535 3244.1 2.113 - - - 100 

Treatmans 383 2205.3 5.758 6.41** 1,00 1,00 67.98 

Genotypes 95 1475.9 15.536 17.31** 1,00 1,00 45.49 

Environments 3 78.8 26.28 20.28** 2.60 3.78 2.43 

Blocks 12 15.6 1.296 1.44 1.75 2.18 0.48 

Interaction 285 650.5 2.283 2.54** 1,00 1,00 20.05 

IPCA1 97 301.7 3.11 3.47** 1,00 1,00 46.38 

IPCA2 95 219.6 2.311 2.58** 1,00 1,00 33.76 

Residue 93 129.2 1.389 1.55** 1,00 1,00 - 

Error 1140 1023.3 0.898 - - - - 
** p<0,01 

 

Additional analysis of the GE interaction using the PCA analysis shows a statistical 

significance of the first two main components, IPCA1 and IPCA2, which participated in the GE 

variation with 46.38% and 33.76% respectively, with both axes having a statistically significant 

effect on the GE interaction variation, which is in agreement with BRBAKLIĆ (2015) and AKRAM 

(2008). The first two main components jointly explained more than 80% of the variation of the 

genotype by environment interaction. The statistical significance of the remainder is a 

consequence of an agronomically explicable variation, expressed as IPCA3, which due to its 

small effect on the GE variation is not particularly identified and singled out. In order to identify 

the source of the GE interaction variation, the AMMI biplot is shown and is based on the number 

of main components which can be extracted from the sum of the squares of the genotype and 

environment interaction (ZOBEL et al., 1988). 

According to biplot, and in terms of average values, it could be noticed that all 

agroecological environments are at the level of the experimental overall average. According to 

the arrangement of E3 and E4 points, it can be concluded that the cultivars achieved higher 

average values of spike length in these environments compared to E1 and E2 points. However, 

this result does not favour the E3 and E4 agroecological environments for obtaining bigger spike 

lengths, given the high values of interaction, which indicates the poor stability of this trait. Based 

on the graphic representation, the interaction of genotypes and agroecological environments 
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shows that there was a difference in the multiplicative effects. Similar results were also reported 

by SHARMA et al. (2003). The additive effects had greater influence on the variation of the 

genotypes than the multivariate effects, whose influence, even though smaller, was statistically 

significant according to AMMI ANOVA. This means that the differences between the genotypes 

in the sample were the basis of the variation, which is in accordance with CUI et al. (2011). These 

differences can also be observed in the change of the rank of genotypes for spike length in the 

examined agroecological environments. All genotypes were divided into seven groups according 

to the average values achieved. The average value for the whole experiment was =8cm. The 

first, second, third and seventh groups consisted made up of one genotype (Bambi =3.1cm, NS 

Artemida =6.7cm, NS Rana 2 =8.9cm and NS Arabeska =8.5cm, respectively). Observing 

these four groups, the most stable reaction, expressed by a low GE interaction value, had the 

Bambi cultivar (G26). The fourth, fifth and sixth groups are composed of the largest number of 

examined varieties, with genotypes grouped into the group 5 according to the average value of 

the experiment for the examined trait. The NS 168/10 line achieved the highest values for the 

examined trait 10.8cm) and was singled out by a high stable reaction for the examined 

trait. NS Arabeska (G47), NS Rana 2 (G76) and NS Artemida (G48) cultivars have achieved the 

greatest GE interaction in different agroecological conditions, making them the least stable in the 

selected material (Fig. 1). The genotypes with the least interaction with agroecological 

environments were grouped into the groups 4 and 5, with the cultivars from the group 5 being 

closer to the average value of the experiment for spike lenght. The lines and cultivars that have 

been singled out for their stable reaction are: Renesansa, Obrij, NS Rana 5, Pobeda, Ljiljana, 

Cipovka, Dragana, Simfonija, Simonida, Helena, Zvezdana, Janja, Srna, Angelina, Barbara, NS 

Desetka, NS Futura, NS Ilina, NS 91/04, NS3-6939, Sava, Danica, Milica, Prima, Prva and 

Delta. 

 

 
 

Figure 1. The AMMI1 biplot of 94 genotypes of wheat (Triticum vulgare L.) and one genotype of T. spelta 

L. (Nirvana) and T. compactum Host (Bambi) grown in two years (2011/2012 and 2012/2013) on 

two locations (Novi Sad and Sremska Mitrovica) for spike length. 
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Indirect correlations (Path coefficient) were used to determine the causal relationship 

between plant height, spike length, the number of grains per spike, 1000 kernel weight and the 

dependent variable (Y) which represents the wheat grain yield. Compared to simple correlations, 

they give a more detailed picture of the relationship between the examined variables, because 

they do not only show the relationships between independent and dependent variables, but also 

the relationships between independent variables in their joint influence on the dependent variable 

or indirect influence of the examined traits on the trait which is singled out as Y (WRIGHT, 1921; 

LI, 1975; KANG et al., 1983). This allows for the isolation of those phenotypic traits that mostly 

affect the formation of the wheat grain yield. In this way, their interconnectedness is noticed 

better and the strength of influence of certain yield components on the end result is determined. 

 

 
 

Figure 2. PATH analysis of 94 genotypes of wheat (Triticum vulgare L.) and one genotype of T. spelta L. 

(Nirvana) and T. compactum Host (Bambi) grown in two years (2011/2012 and 2012/2013) on two 

locations (Novi Sad and Sremska Mitrovica). X1- plant height, X2- spike length, X3- the number of 

grains per spike, X4- 1000 kernel weight, Y- yield. 

 

In addition to the path coefficient (p), the direct correlation coefficients (r) between the 

examined traits are also shown. The results of the direct coefficients analysis show that the 

strongest and statistically highly significant link is established between the plant height (X1) and 

yield (Y), r = 0.184**, which is in accordance with CHATURVEDI and GUPTA (1995) and KHAN et 

al. (1999). Moreover, a positive and statistically significant correlation was obtained between the 

1000 kernel weight (X4) and yield (r = 0.176*), which is in agreement with the studies of other 

authors (MONDAL and KHAJURIA, 2001; SARKAR et al., 2002). Although the values of the indirect 

coefficients are low, regularity has been noticed in the influence of the spike length, over all 

other traits, on the yield. The greatest influence on forming the yield is the spike length over the 

1000 kernel weight (rH2H4=0.045), then over the number of grains per spike (rH2H3=0.029) and 

finally over the plant height (rH2H1=0.026), Fig. 2. 
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The order of the material used in the experiment was also presented by an analysis of 

the main coordinates, using PCoA (Principal Coordinates Analysis). 

 

 
 

 
Figure 3. The distribution of 94 wheat genotypes (Triticum vulgare L.) and one genotype Т. spelta L. 

(Nirvana) and Т. compactum Host (Bambi) in two subpopulations across a two dimensional system. 

Pop1=Q1 – light colour; Pop2=Q2 – dark colour 
 
PCoA is a scaling or ordination method that starts with a matrix of similarities or 

dissimilarities between a set of individuals and aims to produce a low-dimensional graphical plot 

of the data in such a way that the distances between points in the plot are close to the original 

dissimilarities. Thus, the starting point matrix of similarities or dissimilarities for PCoA is 

different from that of PCA, which starts with the initial data matrix (e.g. presence versus absence 

of alleles in molecular marker data). When there are relatively few characters and no missing 

data, the output of PCA and PCoA will be similar. However, ROHLF (1972) found that in PCoA, 

the treatment of the missing data is more satisfactory than that in PCA. PCoA is recommended 

over PCA when there are lots of missing data and when there are fewer individuals than 

characters. An analysis of the main components for genotype variability explained over 18% of 

the total variability using the first three components. The first distinguished coordinate explained 

7.76% of the total variation, the second coordinate carried out 6.07% of the variation, while the 

third component explained 4.68% of the variation. Cumulatively, the first two coordinates 

explained 13.83% of the variation (Fig. 3). The dispersion of the points represents two 

subpopulations, which have also been determined in the previous graphic representation. 

According to the literature, the division into subpopulations should have been done on the basis 

of the cultivars found in genealogies or on the basis of their geographical origin (HAO et al., 

2011; NEUMANN et al., 2011; CHEN et al., 2012; DODIG et al., 2012; NIELSEN et al., 2014; 

BRBAKLIĆ et al., 2015). However, in the conducted research, the geographical origin could not 

explain the grouping of genotypes within the same subpopulations, due to the narrow genetic 

variability of the examined material. The division into two groups was done on the basis of their 

lines of descent (PRADHAN et al., 2016). The second group (Q2) consists of all the foreign 

cultivars that were examined in this research (Obrij, Fundulea 4 and Chineese Spring, as well as 
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the oldest cultivars from the NS rana 2 and Yugoslavia experiments, together with eight lines 

which are in the process of recognition and the rest of the new cultivars). The first group (Q1) is 

composed of the remaining cultivars examined, as well as ten lines that are in the process of 

cultivar recognition. 

 

Table 3.  Relation marker-trait among 28 microsatellites and wheat yield of 94 genotypes of winter wheat 

(Triticum vulgare L.) and by one genotype of T. spelta L. (Nirvana) and T. compactum Host 

(Bambi) using GLM (General Linear Model) and MLM (Mixed Linear Model) across four 

environments (E1 – Novi Sad 2011/12.; E2 – Novi Sad 2012/13.; E3 – Sremska Mitrovica 2011/12.; 

E4 – Sremska Mitrovica 2012/13.) 

Chromosome Microsatellite Environment 

GLM MLM 

p marker p marker 

1A gwм357 

Е1 - 2.42Е-05 

Е2 1.15Е-06 1.15Е-06 

Е3 1.81Е-05 1.81Е-05 

Е4 0.0019 0.0019 

2A gwм636 

Е2 1.34Е-05 1.34Е-05 

Е3 6.13Е-08 6.13Е-08 

Е4 0.0011 0.0011 

2A barc5 Е3 0.0057 0.0057 

3A barc12 

Е1 0.0069 0.0069 

Е2 0.0072 0.0072 

Е3 0.0379 0.0379 

6A cfa2114 
Е2 0.0011 1.95Е-05 

Е3 0.0465 0.0011 

7A gwm631 Е3 0.0027 0.0027 

5B barc110 E3 0.0044 0.0044 

6B gwm680 E3 0.0032 0.0032 

2D wmc18 E3 0.0179 0.0179 

4D wmc457 

E1 0.0109 0.0109 

E2 0.0126 0.0126 

E4 0.0011 0.0011 

5D gwm190 
E1 0.007 0.0465 

E3 2.42E-05 0.007 

 

 

Using GLM model 21 positive relationships among traceability and molecular markers 

were recorded, while using MLM model, this number was 22 (Tab. 3). Microsatellites that 

exibited a relation with yield in both models were: gwm357, gwm636, cfa2114, gwm631, 
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gwm190, barc5, barc12, barc110, gwm680, wmc457, which is in partial accordance with 

ALSALEH et al., (2015); ZHANG et al., (2015); BRBAKLIĆ et al., (2015).  

 

CONCLUSION 

The purpose of use of statistical models is their agronomic interpretation. Using 

different statistical tools will lead to different presentations of results, but by comparing the 

results and correctly interpreting them, an accurate picture of what happens in field experiments 

can be obtained and nothing can replace that in agronomy. Regardless of the size of the 

examined population, if the selection criteria are the same or at least approximately similar, the 

variation in the spike length trait within the population will be small in the case of cultivars 

envisaged for intensive use of wheat. In path analysis regularity has been noticed in the influence 

of the spike length, over all other traits, on the yield. The greatest influence on forming the yield 

is the spike length over the 1000 kernel weight (rH2H4=0.045). Principal coordinate analysis 

(PCoA) assigned 96 genotypes  to two groups in the conducted research. The geographical origin 

could not explain the grouping of genotypes within the same subpopulations, due to the narrow 

genetic variability of the examined material. The division into two groups was done on the basis 

of their lines of descent.  
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Izvod 

Nove tehnike u oplemenjivanju biljaka se koriste da bi se podigao stepen efikasnosti u 

proizvodnji hrane, ne bi li se zadovoljile potrebe za sve bržom rastućom ljudskom populacijom. 

Dužina klasa je jedna od najvažnijih osobina kada se formira prinos zrna pšenice. Ciljevi ovog 

rada su bili trojaki: da se odredi uticaj genotipa, spoljašnje sredine i interakcije, ne bi li se 

procenila stabilnost spomenute osobine; prikazati uzročno posledične veze između dužine klasa i 

prinosa zrna; pretvoriti broj verovatnih varijabli u manji broj, nazvanim glavne komponente. 

Ogled je postavljen na dve lokacije tokom 2011/12 i 2012/13 godine i činilo ga je 96 genotipa 

pšenice. Udeo genotipa bio je najveći, dok je udeo interakcije bio drugi po delu u ukupnoj 

fenotipskoj varijansi. Ispitivana populacija podelila se u dve grupe, pri čemu to nije objašnjeno 

poreklom određenih sorti, već predačkom linijom.  
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