
fpls-08-02238 January 12, 2018 Time: 13:40 # 1

REVIEW
published: 17 January 2018

doi: 10.3389/fpls.2017.02238

Edited by:
Leire Molinero-Ruiz,

Instituto de Agricultura Sostenible
(CSIC), Spain

Reviewed by:
Felicity Vear,

INRA – Auvergne Rhône-Alpes
Centre, France

Lili Qi,
Agricultural Research Service (USDA),

United States
Ruth Amelia Heinz,

Instituto Nacional de Tecnología
Agropecuaria (INTA), Argentina

*Correspondence:
Renate Horn

renate.horn@uni-rostock.de

Specialty section:
This article was submitted to

Plant Breeding,
a section of the journal

Frontiers in Plant Science

Received: 15 October 2017
Accepted: 20 December 2017

Published: 17 January 2018

Citation:
Dimitrijevic A and Horn R (2018)
Sunflower Hybrid Breeding: From

Markers to Genomic Selection.
Front. Plant Sci. 8:2238.

doi: 10.3389/fpls.2017.02238

Sunflower Hybrid Breeding: From
Markers to Genomic Selection
Aleksandra Dimitrijevic1 and Renate Horn2*

1 Institute of Field and Vegetable Crops, Novi Sad, Serbia, 2 Institut für Biowissenschaften, Abteilung Pflanzengenetik,
Universität Rostock, Rostock, Germany

In sunflower, molecular markers for simple traits as, e.g., fertility restoration, high
oleic acid content, herbicide tolerance or resistances to Plasmopara halstedii, Puccinia
helianthi, or Orobanche cumana have been successfully used in marker-assisted
breeding programs for years. However, agronomically important complex quantitative
traits like yield, heterosis, drought tolerance, oil content or selection for disease
resistance, e.g., against Sclerotinia sclerotiorum have been challenging and will require
genome-wide approaches. Plant genetic resources for sunflower are being collected
and conserved worldwide that represent valuable resources to study complex traits.
Sunflower association panels provide the basis for genome-wide association studies,
overcoming disadvantages of biparental populations. Advances in technologies and the
availability of the sunflower genome sequence made novel approaches on the whole
genome level possible. Genotype-by-sequencing, and whole genome sequencing
based on next generation sequencing technologies facilitated the production of large
amounts of SNP markers for high density maps as well as SNP arrays and allowed
genome-wide association studies and genomic selection in sunflower. Genome wide or
candidate gene based association studies have been performed for traits like branching,
flowering time, resistance to Sclerotinia head and stalk rot. First steps in genomic
selection with regard to hybrid performance and hybrid oil content have shown that
genomic selection can successfully address complex quantitative traits in sunflower and
will help to speed up sunflower breeding programs in the future. To make sunflower
more competitive toward other oil crops higher levels of resistance against pathogens
and better yield performance are required. In addition, optimizing plant architecture
toward a more complex growth type for higher plant densities has the potential
to considerably increase yields per hectare. Integrative approaches combining omic
technologies (genomics, transcriptomics, proteomics, metabolomics and phenomics)
using bioinformatic tools will facilitate the identification of target genes and markers for
complex traits and will give a better insight into the mechanisms behind the traits.

Keywords: association panel, genome-wide association studies, genomic estimated breeding value, genomic
selection, genome sequence, marker-assisted selection, sunflower, traits

INTRODUCTION

Sunflower represents the second most important crop based on hybrid breeding, after maize (Seiler
et al., 2017). It is mainly used for its seed oil, even though the seeds of confectionary sunflower also
serve as snacks. With up to 12% of the global production of vegetable oils worldwide, sunflower
takes position number four after palm oil, soybean and canola oil (Rauf et al., 2017). Apart from
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its use for human nutrition, sunflower oil has a number of
industrial applications as, e.g., basic component for polymer
synthesis, biofuel, emulsifier or lubricants (Dimitrijevic et al.,
2017).

Up until the beginning of the 1970s of the last century
sunflower production was based on open-pollinated varieties
(Vear, 2016). Events that led to changing sunflower production to
hybrid breeding were the discoveries of the first cytoplasmic male
sterility (CMS) source (Leclercq, 1969) and the identification of
corresponding restorer genes (Kinman, 1970; Leclercq, 1971).
Soon after, in 1972, the first sunflower commercial hybrid
was available for production in United States (Putt, 1978).
Exploitation of heterosis for hybrid development enabled farmers
to obtain higher seed and oil yields, as well as increased
uniformity (Bohra et al., 2016). The development of sunflower
hybrids set up sunflower as a major viable crop worldwide
and encouraged the founding of numerous public and private
breeding centers (Skoric, 2012; Seiler et al., 2017). In recent years,
public and private sector contributed to assemble huge plant
genetic resources in sunflower, to identify markers for marker
assisted selection (MAS) and to establish the use of new high-
throughput technologies in sunflower. Today, the estimated value
of global sunflower production reaches $20 billion per year (FAO,
2016).

Basic directions in sunflower hybrid breeding include
developing: (1) high seed and oil yield hybrids resistant to
dominant diseases and tolerant to drought, (2) hybrids with
changed oil properties, (3) confectionary hybrids, (4) herbicide
resistant hybrids and (5) ornamental hybrids (Jocic et al., 2015).
In addition, special markets have particular demands such as (1)
achene and kernel properties as well as high protein content and
lower oil content (lower than 40%) in confectionary sunflower
production, (2) specific fatty acid and tocopherol composition
in food and non-food industry or (3) plant height, ray and
disk flower color, duration of flowering in ornamental sunflower
hybrid breeding. The common needs for resistance against
abiotic and biotic stress as well as the special needs of the
various breeding purposes require the development of markers
to facilitate the introduction of different traits.

Botanically, sunflower (Helianthus annuus L.) is a member
of the Asteraceae family, one of the most diverse and largest
families of flowering plants. Due to the economic importance
of the cultivated sunflower and the ecophysiological variability
within the genus Helianthus, sunflower became a model plant
species for genome studies in the family (Bachlava et al., 2012).
The sunflower genome with 3.6 Gb is quite large (Badouin
et al., 2017), three times larger than the rapeseed genome
(Chalhoub et al., 2014), or more than eight times larger than
the one of rice (Arumuganathan and Earle, 1991). Due to its
ability to grow in different agroecological conditions and its
moderate drought tolerance, sunflower may become the oil crop
of preference in the future, especially in the light of global
environmental changes. Even though simulations showed an
increase of sunflower yield for northern parts of Europe in
view of predicted climate changes, negative effects on sunflower
yield may occur in southern latitudes (Debaeke et al., 2017).
Consequently, more attention should be paid to breeding for

better adaptation with regard to climate changes. These traits
should include not only improvement in drought tolerance,
but also introduction of pest resistance, salt tolerance and
changes of plant architecture for better adaptation. Exploitation
of available plant genetic resources in combination with the use
of modern molecular tools for genome-wide association studies
(GWAS) and application of genomic selection (GS) could lead to
considerable improvements in sunflower. However, only in the
recent years plant and genomic resources have become available
in sunflower comparable to other crops (Figure 1). In this review
we will talk about the long way that sunflower breeders and
biotechnologists have to go and the future perspectives of using
modern molecular tools in sunflower breeding.

PLANT GENETIC RESOURCES IN
SUNFLOWER

Biparental and Wild Populations
Biparental populations based on crosses between elite breeding,
conventional, or introgressed lines (e.g., Berry et al., 1995; Horn
et al., 2003; Vera-Ruiz et al., 2006; Kane et al., 2013; Livaja
et al., 2016) as well as landraces and wild species (e.g., Quillet
et al., 1995; Kim and Rieseberg, 1999; Brouillette et al., 2007;
Ma et al., 2017) have been employed in sunflower for mapping
of genes, marker detection, QTL analyses and gene cloning. In
addition, recombinant inbred lines (RILs) have been developed
that as immortals can be maintained forever by self-propagation
(e.g., Berrios et al., 1999; Tang et al., 2002; Tang et al., 2006;
Poormohammad Kiani et al., 2007a; Talukder et al., 2016).
However, biparental populations have three major disadvantages:
(1) these populations have to be individually established for each
research project requiring time and resources, (2) only two alleles
per locus can be evaluated and (3) due to missing recombination
events populations show low resolutions in mapping (Bernardo,
2008; Patrick and Alfonso, 2013). The use of association panels
overcomes these problems. To verify the usefulness of association
panels the genetic diversity between wild populations and the
genetic diversity fixed in association panels were compared
(Mandel et al., 2011; Filippi et al., 2015). Even though alleles
present only in the wild populations were detected, the majority
of the alleles were present in the investigated association panels.

Sunflower Collections
The largest sunflower collection is handled at the Institute of
Field and Vegetable Crops, Novi Sad, Serbia consisting of over
7,000 sunflower inbred lines developed from different genetic
sources and 21 perennial and 7 annual species (447 accessions
in total)1 (Atlagic and Terzic, 2014). The next largest collection
of more than 5000 cultivated and wild Helianthus accessions is
held at the USDA-ARS NPGS in Ames (Marek, 2016). About
half of these, 2,519 accessions, represent the world’s largest
wild relatives sunflower collection, comprising 53 species – 39
perennial and 14 annual species (Seiler et al., 2017). Another large
collection for sunflower (cultivated and wild) is maintained at the

1http://www.nsseme.com/about/inc/oilcrops/wild.php
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FIGURE 1 | Schematic overview of the resources available in sunflower for marker-assisted selection (MAS) and future genomic selection (GS). Diverse plant genetic
resources for sunflower breeding are available representing a large genetic diversity that can be exploited for sunflower improvement. The access to the sunflower
genome sequences, the large resources of SNP, being part of high resolution maps or SNP arrays, and the huge amount of expression data will accelerate sunflower
breeding by making the selection steps more efficient and precise. Future developments will move marker-assisted breeding toward genomic selection based on
genomic estimated breeding values (GEBVs). WUE, water use efficiency; NUE, nitrogen use efficiency.

Vavilov Institute of Plant Industry, which consists of a total of
2,780 accessions from which 2,230 represent cultivated sunflower
accessions and 550 wild sunflower accessions belonging to 24
species (19 perennials and 5 annuals) (Gavrilova et al., 2014).
Some smaller numbers of 585 accessions of H. annuus are
available via GRIN-CA, the Plant Gene Resources of Canada2

and additional 613 sunflower accessions of diverse origin are
distributed by the IPK Gatersleben3. These resources represent
mostly uncharacterized plant material. In contrast to these, a
well-defined collection of 400 open-pollinated varieties, landraces
and breeding pools has been assembled by INRA to reflect the
worldwide diversity present in sunflower (Mangin et al., 2017b).
However, conservation of population diversity of sunflower
populations represents a challenge in the maintenance process
due to the self-incompatibility of wild sunflowers (Gandhi et al.,
2005) and the possibility of genetic drifts occurring during
the propagation of seed stocks (Mangin et al., 2017b). To
study the preservation of the genetic variability, a set of 114
cultivated sunflower populations of the INRA collection were
genotyped using a 384 Golden Gate SNP Assay. In conclusion,
multiplication in isolation fields or use of cages is recommended
to reduce loss of genetic variability in cultivated genetic resources.

These worldwide available collections of sunflower represent
a valuable resource for the sunflower community. It could be
of interest to include some additional accessions of these large
collections to the existing association panels described below.

2http://pgrc3.agr.gc.ca/order-ordre_e.html
3https://gbis.ipk-gatersleben.de/GBIS_I/

Association Panels
Association panels have to be characterized by molecular markers
like SSRs or SNPs to avoid false associations due to the
population structure and family relationship. The review here
focusses on association panels that are online available as the
prior mentioned sunflower collections. To analyze the primary
gene pool of sunflower an association panel consisting of
433 cultivated accessions from North America and Europe in
addition to 24 wild sunflower populations distributed over the
whole of United States were characterized by 34 selected EST-
SSRs chosen on the presumptive neutrality toward domestication
and breeding efforts (Chapman et al., 2008; Mandel et al., 2011).
USDA cultivated accessions in this panel were assigned to the
following categories: HA and RHA being either non-oil or oil,
landrace, open-pollinated variety (OPV), non-oil introgressed, oil
introgressed, other non-oil, and other oil. The INRA accessions
could only be categorized into INRA-HA and INRA-RHA as the
information on oil and non-oil was not always available. Analyses
using the software STRUCTURE (Pritchard et al., 2000) and
Principle Coordinates (PCO) analyses (Patterson et al., 2006) did
not reveal deep genetic divisions within the germplasm (Mandel
et al., 2011). The cultivated and the wild populations separated
into two different groups and within the cultivated accessions the
restorer-oil (RHA-oil) category stayed apart from the remaining
gene pool (Mandel et al., 2011). This is not unexpected due to
the hybrid history of sunflower in which the maintainer and
restorer pools have been kept separate on purpose to maximize
heterosis (Fick and Miller, 1997). A selection of 288 accessions
still covers nearly 90% of the genetic diversity available in the
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original larger panel. This association panel was named UGA-
SAM1 and consists of 259 accessions, which are distributed
by the Germplasm Resources Information Network (GRIN4)
of the USDA National Plant Germplasm System (NPGS) and
29 accessions available through the French National Institute
for Agricultural Research (INRA, France). This UGA-SAM1
population, which has been successfully employed in association
studies (Mandel et al., 2013; Nambeesan et al., 2015), represents
a very valuable tool for future association studies for the whole
sunflower community. A minimal core set of 12 accessions
(representing HA, RHA, oil and non-oil accessions as well as
INRA material) capturing nearly 50% of the total allelic diversity
might be ideal to build up a MAGIC (Multi-parent advanced
generation intercross) population for sunflower. The MAGIC
strategy is interesting for studies of multiple alleles in order to
exploit higher recombination frequencies and better mapping
resolution (Cavanagh et al., 2008). Development of MAGIC
populations is in progress for numerous plant species (Bandillo
et al., 2013) and would be interesting for sunflower as well.

Argentinean germplasm also represents a valuable genetic
resource due to the long history of sunflower breeding in
Argentina (de Bertero, 2003; Moreno et al., 2013). Filippi
et al. (2015) characterized the population structure und
calculated the genetic diversity of the association mapping
population (AMP-IL), representing 137 INTA (National Institute
of Agricultural Technology, Argentina) accessions and 33
accessions of open-pollinated and composite populations. The
plant material is maintained by The Active Germplasm Bank
of INTA Manfredi (AGB-IM). Using 42 SSR markers and/or
SNP markers, detected by a 384 Illumina SNP-oligo pool array,
estimated and observed heterozygosity as well as clustering
using STRUCTURE and Discriminant Analysis of Principle
Components (DAPC) were compared for the two marker types.
As in other studies (Mandel et al., 2011, 2013) the population
structure was dominated by the maintainer/restorer trait (Filippi
et al., 2015).

A germplasm collection of 196 Spanish confectionary
sunflower accessions is maintained at the Centre of Plant
Genetic Resources of the National Institute for Agricultural
and Food Research and Technology (CRF-INIA)5. A large
genetic variation was revealed regarding hundred-seed weight,
kernel percentage, seed oil content, fatty acid and tocopherol
composition, phytosterols and other traits (Velasco et al., 2014;
Pérez Vich et al., 2017).

In addition to well characterized association panels,
considerable plant genetic resources are nowadays available
in sunflower (cultivated as well as wild H. annuus accessions and
accessions representing other species in the genus Helianthus).

Mutagenized Populations
To increase the naturally available genetic variability sunflower
has been mutagenized (Zambelli et al., 2015). Mutant populations
have been successfully developed and used to screen for mutant
phenotypes interesting for breeding purposes with regard to

4https://www.ars-grin.gov/
5http://wwwx.inia.es/coleccionescrf/PasaporteCRF.asp

flowering time, dwarf habitus, oil content, high oleic trait,
herbicide resistance and branching (Soldatov, 1976; Gabard and
Huby, 2001; Sala et al., 2008a; Cvejic et al., 2011b; Leon et al.,
2013). Recently, a TILLING (Targeted Induced Local Lesion In
Genomes) population for high throughput screening of EMS
(ethyl methane sulfonate)-induced mutations in sunflower was
established by Sabetta et al. (2011) and used for studies of genes
involved in the fatty acid biosynthesis. Optimized mutagenesis
using EMS was used to develop an additional sunflower TILLING
platform (Kumar et al., 2013). Phenotypic characterization of
5,000 M2 lines was performed to estimate the mutation rates
and to select interesting mutants. As seed oil biosynthesis is of
major importance in sunflower, TILLING of FatA and SAD genes
were investigated and revealed an overall mutation rate of one
mutation every 480 kb (Kumar et al., 2013). Another possibility
to develop mutant populations is to apply gamma irradiation or
fast neutrons (Cvejic et al., 2011a). Optimal ranges for gamma
irradiation and fast neutrons were explored in comparison to
EMS concentrations.

Besides induced mutagenized populations, natural mutations
that have occurred in wild sunflower populations have had
significant impact on sunflower hybrid breeding, especially in
the area of herbicide resistance. In the recent years intensive
use of herbicides has led to the emergence of resistant wild
sunflower populations. The first case was a population of
common sunflower found in a soybean field in Rossville (KS,
United States), in which imazethapyr that belongs the group of
AHAS (acetohydroxy acid synthase) inhibitors was used over
a time course of seven consecutive years for weed control.
Thus, creating the first sunflower population, named ANN-
PUR, resistant to one of the AHAS inhibitors (Al-Khatib
et al., 1998). Resistance from this population was successfully
introduced into commercial sunflower hybrids (Miller and Al-
Khatib, 2000; Jocić et al., 2004). Sunflower production based on
the use of this imidazolinone (IMI) resistance, which provides
an efficient and easy control of post-emergence broadleaf weeds
in Europe, is called Clearfield R© technology. In addition to
the discovery of IMI resistant sunflowers, another population
of wild sunflowers (ANN-KAN), tolerant to another AHAS
herbicide group called sulfonylurea, was discovered in Kansas
(United States) (Al-Khatib et al., 1999). The same tolerance was
also obtained by EMS mutagenesis (Gabard and Huby, 2001).
Later, more populations of wild sunflowers resistant to AHAS
herbicides were found (e.g., White et al., 2002, 2003; Jacob
et al., 2017). In addition, a new tolerance for imidazoline called
Clearfield Plus R© was selected from an M2 population of 600,000
plants treated with EMS (Sala et al., 2008a).

Natural genetic diversity and naturally occurring or
chemically/gamma-ray induced genetic variability represent
a perquisite for selection in breeding. The wide range of
accessions maintained and made available by the germplasm
banks for the research community is an extremely valuable
starting point for successful breeding programs in sunflower
allowing association studies and introduction of new traits into
existing commercial breeding material. However, mutagenesis
can create additional new genetic variability in traits where the
natural variability is not sufficient.

Frontiers in Plant Science | www.frontiersin.org 4 January 2018 | Volume 8 | Article 2238

https://www.ars-grin.gov/
http://wwwx.inia.es/coleccionescrf/PasaporteCRF.asp
https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-08-02238 January 12, 2018 Time: 13:40 # 5

Dimitrijevic and Horn Sunflower: Markers to Genomic Selection

GENETIC MAPS AND SUNFLOWER
GENOME SEQUENCE

Different molecular markers, which have been applied in
mapping genes and development of sunflower linkage maps
(Figure 1), set the basis for the assessment of the genetic
diversity present in the genus Helianthus as well as in cultivated
and wild sunflower accessions. Positioning of desirable genes
allowed the identification and development of more specific
molecular markers. At the Sunflower CMap database6 genetic
maps available for sunflower have been listed and can be
compared with each other by using the program CMAP (Kane
et al., 2013).

The first map was developed on wild sunflower using RAPD
markers (Rieseberg et al., 1993). A couple of years later maps
were generated and published by using non-PCR based RFLP
markers in different crosses of cultivated sunflower (Berry et al.,
1995; Gentzbittel et al., 1995; Jan et al., 1998). These maps were
published several years later than RLFP maps, e.g., in wheat,
maize, barley, rice, and oilseed rape due to companies being
involved in construction of the sunflower map (Hu, 2010). Later
on, AFLP markers were added to the maps (Peerbolte and
Peleman, 1996; Gedil et al., 2001). Most sunflower linkage maps
contained 17 linkage groups (LG), representing the number of
haploid chromosomes in sunflower. These maps were followed
by genetic maps based on SSR markers (Tang et al., 2003b; Yu
et al., 2003). The first composite genetic SSR map consisted of
278 single-locus SSR markers as well as additional 379 markers
(public and proprietary), covering 1423 cM. This map that
nowadays serves as reference genetic map for sunflower (Tang
et al., 2003b) was then further saturated with additional SSR
markers exploring three new mapping populations (Yu et al.,
2003). In between more than 2,000 SSR have been derived from
genomic sequences (gSSR) and EST (EST-SSR) and are now
available for mapping and genotyping (Brunel, 1994; Dehmer and
Friedt, 1998; Paniego et al., 2002; Tang et al., 2003b; Yu et al.,
2003; Poormohammad Kiani et al., 2007b; Chapman et al., 2008;
Heesacker et al., 2008). Existing sunflower maps were further
enriched by these gSSRs, EST-SSRs, INDELs, TRAPs markers (Hu
et al., 2007; Heesacker et al., 2008). These SSR markers (sequences
and primers available through NCBI) represent a very valuable
tool as they allow the localization of genes on individual linkage
groups (Tang et al., 2003b) as well as on the recently published
sunflower genome sequence of HanXRQ7 (Badouin et al., 2017).
About 3 gigabases (Gb) representing 80% of the whole genome
size were assembled and represent an extremely useful tool for
all different research programs that aim at the improvement of
sunflower hybrids.

Finally, the step toward high-density maps was made possible
by using SNP-based markers, starting with Lai et al. (2005) who
derived SNPs from an EST database (as part of the Compositae
Genome Project) and used them for mapping. An Infinium
Beadchip including 9,480 SNPs based on transcriptome data was
developed by Bachlava et al. (2012) and employed by Bowers et al.

6http://www.sunflower.uga.edu/cmap/
7https://www.heliagene.org/HanXRQ-SUNRISE/

(2012) to obtain four high-density genetic maps. Each of these
maps contained 3,500–5,500 loci. Even though the maps were
highly colinear, gaps in individual maps were observed. To solve
this issue a consensus map of 10,080 loci was constructed from
these data (Bowers et al., 2012). Talukder et al. (2014a) developed
a high density map of 5,019 SNP markers obtained via RAD-
sequencing. The rust resistance gene R12 was fine-mapped using
this SNP-based map. In addition, 118 SSR markers were included
in the SNP map to address and orientate the linkage groups
according to the sunflower reference genetic map. Celik et al.
(2016) pioneered the use of genotyping-by-sequencing for large
scale SNP detection in sunflower and developed a SNP-based
linkage map of 817 SNP-markers covering all 17 LG by analyzing
an F2 obtained from the cross RHA 436 × H08 M1. Using the
newly developed 25 K SNP array in sunflower Livaja et al. (2016)
were able to construct a linkage map based on 6,355 SNP markers
for the RIL population NDBLOSsel × CM625. The connection
between genetic linkage maps and the sunflower karyotype
was finally made by developing a molecular cytogenetic map
for H. annuus (Feng et al., 2013). BAC and BIBAC clones
with known genetic locations were used in fluorescence in
situ hybridization (FISH) experiments to address the individual
chromosomes.

The high resolution of the recently developed high-density
maps in sunflower facilitates to narrow down the regions of
interest, which should allow identification and cloning of genes
for various relevant traits in the near future. In addition, SNP-
based maps deliver markers closely linked to, e.g., resistance
genes that can be applied in large scale marker-assisted breeding
programs or can be integrated in SNP arrays.

MARKER DEVELOPMENT BY LINKAGE
MAPPING

Resistance to Downy Mildew
Developed linkage maps set a good basis for localization
and mapping of simply inherited traits. Most of the downy
mildew resistance genes, conferring resistance to the oomycete
Plasmopara halstedii, have been found to be dominantly inherited
and consequently, relatively easy to map by using molecular
markers. Identification of closely linked markers also represents
a good basis for map-based cloning of the genes.

Great efforts were put into examination of downy mildew
resistance genes (R genes), designated as Pl genes, that are
distributed throughout sunflower genome: Pl13, Pl14, Pl16, and
PlArg on LG1; Pl1, Pl2, Pl6, Pl7, Pl15, and Pl20 on LG8; Pl5, Pl8,
and Pl21 on LG13; Pl17 and Pl19 on LG4; while Pl18 is localized
on LG2 of the sunflower SSR reference map (Mouzeyar et al.,
1995; Roeckel-Drevet et al., 1996; Vear et al., 1997; Bert et al.,
2001; Slabaugh et al., 2003; Yu et al., 2003; Mulpuri et al., 2009;
Wieckhorst et al., 2010; Bachlava et al., 2011; Vincourt et al., 2012;
Qi et al., 2015a; Qi L.L. et al., 2016; Zhang et al., 2016; Ma et al.,
2017). Most of Pl genes are clustered, except for PlArg and Pl18.

The Pl cluster on LG8 was the first to be detected by molecular
markers. Mouzeyar et al. (1995) used RAPD and RFLP markers
for mapping the first downy mildew resistance gene, Pl1, which
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is a part of a large Pl cluster (Pl1, Pl2, Pl6, Pl7). Of all genes
in the cluster, Pl6 gene was the most intensively examined
since it conferred resistance to all the races present for a long
time, except race 304. Different marker types were used for the
introgression of Pl6 into susceptible sunflower material including
STS (Sequence-Tagged Sites) markers belonging to the TIR-NBS-
LRR class of RGA (Resistance-Gene Analog) (Bouzidi et al.,
2002) and co-dominant CAPS (Cleaved Amplified Polymorphic
Sequence) markers (Table 1). The developed markers have been
successfully used to introduce Pl6 by MAS or to track the
introduction of Pl6 in backcrosses during conversion of downy
mildew susceptible lines into resistant ones (Dimitrijevic et al.,
2010; Jocic et al., 2010).

Two Pl genes originating from H. argophyllus, Pl8 and PlArg ,
were also subject of numerous studies. PlArg confers resistance
to all present downy mildew races and Pl8 to 96% of all isolates
collected in the north-central region of United States (Gilley
et al., 2016). Radwan et al. (2004) developed STS markers for
detection of the Pl5/Pl8 locus that were later on also explored in
other sunflower genotypes (Dimitrijevic et al., 2011). Bachlava
et al. (2011) developed two resistance gene candidate (RGC)
markers, RGC251 and RGC15/16, closely linked to Pl8 that
belong to the group of SSCP (Single-Strand Conformational
Polymorphism) markers. However, SSCPs are labor-intensive
and time-consuming in MAS. A comprehensive study of Pl8 by
Qi et al. (2017) explored previously published SNP markers as
well as two SSR markers (Bowers et al., 2012; Talukder et al.,
2014a) to genotype a F2 population derived from the cross
HA434× RHA340. The three closest SNP markers, NSA_000423,
NSA_002220, and NSA_002251, were then investigated to
check the specificity of the identified markers, concluding that
NSA_000423 and NSA_002220 could serve as diagnostic markers
in 87% of the tested sunflower lines when RHA 340 is used as
donor for the Pl8 gene. Validation of these markers across 548
sunflower lines proved their usefulness for MAS. However, a
larger panel of sunflower lines should to be tested.

Unlike, the Pl8 gene, PlArg is not clustered. Several authors
identified and developed different types of markers (SSRs, SNPs,
RGCs) for MAS (Dußle et al., 2004; Wieckhorst et al., 2010;
Imerovski et al., 2014b), some of these were also validated across a
panel of sunflower lines. ORS716 was identified as the most useful
marker in MAS (Table 1). Recently, Qi et al. (2017) combined
available genomic data for the population obtained from the
cross HA 89 × RHA 464 by use of SNP markers (Pegadaraju
et al., 2013; Talukder et al., 2014a) with the phenotypic evaluation
for resistance. The two nearest SNP markers (NSA_007595 and
NSA_001835) narrowed the PlArg locus down to an area of
2.83 Mb. The nine identified SNP markers represent valuable
diagnostic tools for introgression of PlArg into most genetic
backgrounds in sunflower.

Other markers for use in MAS for downy mildew resistance
include the identification of the tightly linked SSR marker
ORS1008 to Pl13 gene (Mulpuri et al., 2009), development
of RGC markers tightly linked to Pl14 gene (Bachlava et al.,
2011) and the identification of one dominant co-segregating SSR
marker (ORS1008) and one co-dominant tightly linked (EST)-
SSR (HT636) to Pl16. Interestingly, HT636 and ORS1008 were

reported to be linked to both, Pl13 and Pl16, indicating that
these genes are in close vicinity to each other (Liu et al., 2012a).
Qi et al. (2015a) used SSRs to place Pl17 onto LG4 and then
used SNPs identified by the National Sunflower SNP Consortium
(Talukder et al., 2014a) and by Bowers et al. (2012) to saturate
the region surrounding the Pl17 gene. The authors identified SNP
SFW04052 and ORS963 as the closest flanking markers linked to
Pl17. A year later, Qi L.L. et al. (2016) used the same methodology
to map Pl18 to LG2 and found two SSRs and 10 SNPs flanking the
Pl18 gene. Pl18 represents the first gene mapped to LG2. In 2017,
two new Pl genes, Pl19 and Pl20, were reported and mapped to
LG4 and LG8, respectively (Ma et al., 2017; Zhang et al., 2017).
Two SSRs and two SNPs were mapped in close vicinity to Pl19,
while four SNP markers (SFW02745, SFW09076, S8_11272025,
and S8_11272046) co-segregated with Pl20. All markers can be
used in MAS and most importantly in pyramiding Pl genes in
order to achieve long lasting resistance toward downy mildew.
The development of SNP markers is of special interest because
of the large number of markers generated that increase the
likelihood to have markers available for any cross combination.

Resistance to Sunflower Rust
Infections of sunflower plants with Puccinia helianthi Schwein
lead to the rust disease. This fungus, which is mostly spread in
North America, Argentina, South Africa, and Australia, can cause
significant damage and yield reduction in infected fields. Genetic
control of the disease can be effective; however, due to fast
emergence of new races either by sexual or asexual reproduction,
resistance achieved is short-termed. Consequently, a significant
effort has been made into discovering rust resistance genes and
the introduction into commercial lines and hybrids with a final
goal of pyramiding several resistance genes in order to achieve
long-term resistance. Most of the rust resistance genes (R genes),
described so far, are monogenic dominant. R genes are located on
different LGs of the sunflower genome with the majority being
located on the LG13 [R4, Ru6, R11, Radv, R13a (RHAR6), and R13b]
(Bachlava et al., 2011; Qi et al., 2011b, 2012b; Gong et al., 2013b;
Bulos et al., 2014).

First molecular studies were conducted on discovering
markers for R1 and Radv genes by use of RAPD and SCAR
markers (Lawson et al., 1996, 1998). While R1 gene was the first
rust resistance gene present in a large number of sunflower lines,
Radv is present in the line P2 owned by Pioneer Hi-Bred Australia
(Lawson et al., 1998; Qi et al., 2011a). Radv is also present in
the USDA line RHA 340, which Bachlava et al. (2011) used for
mapping of the gene. Lawson et al. (1998) developed the SCAR
marker SCT06950 linked to R1 gene, which proved to be useful
for detection of R1 in different genetic backgrounds, except for
the sunflower line MC29, which carries the R2 and R10 genes.
For mapping of R2, Qi et al. (2015c) used a different MC29
line, called MC29 (USDA) as it was cultivated in the USDA-ARS
Sunflower Research Unit, Fargo, North Dakota, which differs in
term of resistance to NA race 6 in comparison to the MC29 line
used by Lawson et al. (1998). Qi et al. (2015c) reported two SNP
markers, NSA_002316 and SFW01272, flanking the R2 gene on
LG14. Since, the closest marker, SFW01272, can only to a certain
extent be used to detect the R2 gene across different genetic
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TABLE 1 | Overview of resistance sources, locations, and markers of disease resistance genes in sunflower.

LG Resistance Source Markers linked to the Distance Reference

gene resistance gene (cM)

LG1 PlArg Arg1575-2(1,2) NSA_007595(4) 0.01 Dußle et al., 2004(1)

RHA 419(3) NSA_001835(4) 0.01 Wieckhorst et al., 2010(2)

RHA 464(4) ORS 716(2,3) 0.3 (2); 0.0 (3)

ORS 662(1,2,3) 1.9(1); 0.3(2); 0.0(3) Imerovski et al., 2014b(3)

ORS 675(3) 0.0 Qi et al., 2017(4)

RGC52a, RGC52b, RGC151(2) 0.3

Pl13 HA-R5 ORS1008(1) 0.9(1); 1.8(2) Mulpuri et al., 2009(1)

HT636(2) 2.2 Liu et al., 2012a(2)

Pl14 29004 RGC203 1.6 Bachlava et al., 2011

RGC188 2.6

Pl16 HA-R4 ORS1008 0.0 Liu et al., 2012a

HT636 0.3

LG2 R5 HA-R2 SFW03654(2) 0.6 Qi et al., 2012a(1)

ORS653a(1) 1.8 Qi et al., 2015b(2)

NSA_000267(2) 2.2

ORS1197-2(1) 3.3

Pl18 PI 494573 ORS203 0.4 Qi L.L. et al., 2016

SFW03060 0.9

SFW03883 0.9

CRT214 1.1

LG3 Or5 RPG01(1) RTS05(1) 5.6 Lu et al., 2000(1)

PHD(2) CRT 392(2) 6.2 Tang et al., 2003a(2)

ORS1036(2) 7.5

LG4 Pl17 HA 458 ORS963 0.8 Qi et al., 2015a

SFW04052 2.1

Pl19 PI 435414 NSA_003564 0.6 Zhang et al., 2017

NSA_006089 0.6

LG8 Pl1 RHA 266 S017H3-3 5.6 Mouzeyar et al., 1995

S124EI-2 7.1

Pl6 HA 335(1) Hap2R 0.0 Pankovic et al., 2007

HA 336(2) Hap3 0.0

CAPS HhaI 0.0

CAPS RsaI 0.0

Pl20 PI 494578 SFW02745/SFW09076/S8_
11272025/S8_11272046

0.0 Ma et al., 2017

R1 RHA 279 SCT06950 0.0 Lawson et al., 1998

LG11 R12 RHA 464 NSA_003426/NSA_004155/
NSA_000064(2)

0.83(2) Gong et al., 2013a(1)

CRT275(2) 1.0 Talukder et al., 2014b(2)

ORS1227(1) 3.3

ZVG53(1) 9.6

R14 PH3 NSA_000064 0.7 Zhang et al., 2016

ORS1227 1.6

ORS542 3.5

ZVG53 6.9

LG13 Pl5 XRQ Ha-NT5R1, 4.8 Radwan et al., 2004

Ha-NT5S3 6.4

Ha-NT5S1/Ha-NT5S2/
Ha-NT5R2

13.6

Pl8 QIR8 (Pl8 RGC251(2) 0.3 Radwan et al., 2004(1)

derived from RHA 340)(1) RGC15(2) 0.4 Bachlava et al., 2011(2)

(Continued)
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TABLE 1 | Continued

LG Resistance Source Markers linked to the Distance Reference

gene resistance gene (cM)

RHA 340(2,3) NSA_000423/SFW01497/
SFW08875(3)

0.4 Qi et al., 2017(3)

Ha-NT8R3/Ha-NT8R4(1) 3.5

Ha-NT8R5/Ha-NT8R6(1) 4.8

Ha-NTIR11gEI(1) 6.3

R4 HA-R3(1,2) SFW05240/SFW05630/SFW06095/
SFW08283(2)

0.6 Qi et al., 2011b(1)

SFW01497/SFW05630/SFW08875(2) 0.7 Qi et al., 2015b(2)

ORS581(1) 0.8

ZVG61(1) 2.1

RHAR6 HA-R6 ZVG61 0.7 Bulos et al., 2013a

ORS581 1.5

R13a HA-R6 SFW05743(2) 0.2 Gong et al., 2013b(1)

RGC15/16(1) 0.3 Qi et al., 2015b(2)

ORS316/ZVG61(1) 0.4

ZVG61(2) 0.4

SUN14(1) 0.8

R13b RHA 397 SUN14(1) 0.0 Gong et al., 2013b(1)

SFW00757(2) 0.0 Qi et al., 2015b(2)

RGC15/16(1) 0.1

ZVG61, ORS316(1) 0.3

SFW04275/SFW04317/SFW05743(2) 2.4

ZVG61, ORS316(2) 5.9

Radv ‘Advance’(1) SCX20600
(1) 0.0 Lawson et al., 1998(1)

RHA 340(2) RGC260(2) 0.2 Bachlava et al., 2011(2)

ORS316(2) 3.0

Pu6 P386 ORS316 2.5 Bulos et al., 2014

ORS224 4.8

R11 Rf ANN-1742 ORS728 0.3 Qi et al., 2012b

ORS45 1.0

Orab−vl−8 AB-VL-8 ORS683 1.5 Imerovski et al., 2016

ORS657 4.7

LG14 R2 MC 29 (USDA) SFW01272 1.8 Qi et al., 2015c

NSA_002316 2.8

SFW00211 2.9

Numbers are brackets in the superscript in columns: “Source” and “Markers linked to the resistance gene” refer to the author citation list superscript numbers given in the
“Reference” column concerning a specific resistance gene.

backgrounds; the authors recommend the use of two flanking
SNP markers in order to minimize selection of false positives
in MAS.

Further molecular studies of R genes include identification
of molecular markers closely linked to R4, Radv, Pu6, R11, R13a
(RHAR6), and R13b genes that are located on LG13. Qi et al.
(2011b) identified two markers flanking R4 gene (ORS581 and
ZVG61) in the cross HA 89 × HA-R3, which were later also
reported to be linked to rust resistance genes R13a (RHAR6) and
R13b located on the lower end of the LG13 (Bulos et al., 2013a;
Gong et al., 2013b; Qi et al., 2015b) (Table 1). Further on, Gong
et al. (2013b) saturated the region flanking the genes by analysis
of RGC markers that were present in vicinity of downy mildew
resistance gene Pl8, which was also mapped in the lower end
of LG13. Another R gene that mapped in vicinity of Pl8 and

fertility restorer gene Rf1 was Radv. A completely co-segregating
SCAR marker (Lawson et al., 1998) as well as RGC and SSR
markers tightly linked to Radv were identified (Bachlava et al.,
2011) (Table 1). Recently, Bulos et al. (2014) mapped Pu6 gene
and identified closely linked SSRs to this gene in the sunflower
line P386 on lower end of LG13. However, these markers are too
far away to be useful in MAS (Table 1). Pu6 and R4 map 6.25 cM
apart from each other. Qi et al. (2012b) examined the R11 gene
and mapped it 1.6 cM from fertility restoration gene Rf5 also
on the lower end of LG13, hypothesizing the presence of a great
rust R-gene cluster of Radv/R11/R4. SSR marker ORS45 was the
closest to R11 gene and was mapped 1 cM proximal to the gene,
while ORS728 was shown to be a common marker for R11 and
Rf5 genes. The results allow the conclusion that the lower end of
LG13 harbors the second largest cluster of NBS-LRR encoding
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genes: rust resistance and downy mildew resistance genes. Based
on SSR and RGC markers used in this area, Gong et al. (2013b)
proposed that this big cluster could be sub-divided into two
clusters. Radv and R11 form sub-cluster I, while R4, R13a/b, Pl5, Pl8
form subcluster II. Pl21 that was also positioned on LG13 mapped
8 cM proximal to Pl5/Pl8 (Radwan et al., 2004; Vincourt et al.,
2012).

Other rust resistance genes investigated by use of molecular
markers include analysis of R5. This is to date the only R
gene discovered on LG2. Qi et al. (2012a, 2015b) identified two
SSR and two SNP markers flanking the gene, with the closest
being 0.6 cM away (Table 1). On LG11 two rust resistance
genes have been mapped so far: R12 and R14. Both genes were
positioned in the middle of LG11, and were discovered in wild
sunflower accessions, however, they have different origin: R12
from PI413047 and R14 from PI413038 (Gong et al., 2013a;
Zhang et al., 2016). Both genes were mapped between the
markers ORS1227 and ZVG53 (ORS1227 with 3.3 and 1.6 cM
and ZVG53 with 9.6 and 6.9 cM from R12 and R14, respectively).
Talukder et al. (2014b) performed fine mapping of the R12 gene
region by using SNP markers. Five SNP markers (NSA_000064,
NSA_008884, NSA_004155, NSA_003320, and NSA_003426)
were linked with 0.83 cM to the gene, but only two markers
(NSA_003426 and NSA_004155) proved to have diagnostic
quality for R12 (Table 1). The nearest SNP marker to R14 was
NSA_000064, which was mapped with 0.7 cM from the gene
in the F2 mapping population obtained from the cross HA
343 × PH3 (Zhang et al., 2016). However, this marker amplified
the same banding pattern in RHA 464 (R12) and PH3 (R14).
Zhang et al. (2016) identified thirteen SSR/InDel and two SNP
markers that amplified different profiles between the two donors
of R12 and R14 indicating polymorphisms between these regions.

One of the latest efforts in saturation mapping of R genes was
published by Qi et al. (2015b) who used previously developed
SFW and NSA SNP markers in order to saturate the regions
surrounding R4, R5, R13a, and R13b genes and succeeded in
identifying markers that are under 1 cM distant from all analyzed
genes thus raising the efficiency of introduction of rust resistance
in to susceptible material (Table 1). The authors used previously
developed SSR markers and newly developed SNP markers for
identification of homozygous “double-resistant” F2 individuals in
a population obtained from a cross combination between a BC3F2
plant harboring R5 and HA-R6 bearing R13a. The F4 progeny
obtained from chosen plants showed improved resistance toward
races 336 and 777 in comparison to lines that possess only one
resistance gene. Qi et al. (2015c) also performed marker-assisted
pyramiding of R2 and R13a in confectionary sunflower by use
of SSR and SNP markers. Further pyramiding of R genes could
lead to long-term improvements in sunflower rust resistance.
The process of converting susceptible into resistant forms can
be greatly facilitated and accelerated by use of the reported
molecular markers.

Resistance to Broomrape
Another constraint in sunflower production is broomrape
(Orobanche cumana), a parasitic flowering plant, that can cause
significant yield loss of up to 100%. Most of the genes that

confer resistance to broomrape were found to be monogenic
dominant for broomrape races A to E and G (Vranceanu et al.,
1980; Velasco et al., 2012), while resistance to race F was
either inherited by a monogenic dominant gene (Pacureanu-
Joita et al., 1998; Pérez-Vich et al., 2004) or by two recessive
genes (Rodríguez-Ojeda et al., 2001) depending on the genetic
background. Broomrape resistance genes are denoted as Or
genes. Imerovski et al. (2014a) reported a single recessive
resistance gene in the sunflower line HA-267 that carried a
resistance gene higher than Or6. The majority of molecular
analyses were conducted in investigating and creating different
types of molecular markers for detection of Or5 that conveys
resistance to broomrape race E or lower (Lu et al., 2000; Tang
et al., 2003a) (Table 1). The efficiency of RAPD and SSR primers
in MAS for Or5 were tested by Iuoras et al. (2004), however,
none of the primers proved to be efficient or accurate enough.
Imerovski et al. (2013) identified SSR markers associated with
Or2, Or4, and Or6 genes that could be used in converting
broomrape susceptible sunflower genotypes into resistant ones.
However, O. cumana populations belonging to race F have shown
different aggressiveness (Molinero-Ruiz et al., 2009). Imerovski
et al. (2016) mapped newly identified broomrape resistant gene
conferring resistance to broomrape races overcoming race F from
sunflower inbred line AB-VL-8 on LG3. The authors named the
gene Orab−vl−8, which was shown to be recessive and ORS683
mapped 1.5 cM from the gene. Further molecular analysis are
needed in order to develop co-segregating markers for some of
the Or genes. In addition, finding novel resistance sources is
essential since broomrape races are emerging at a high speed.
Recent work of Louarn et al. (2016) involved using 586, 985
SNPs from SUNRISE project8 on GeneTitan R© (Affymetrix) for
identification of QTL for resistance to broomrape races F and G.
The authors identified 17 QTL spread throughout 9 LGs. Among
them was a stable QTL on LG13 that controlled the number of
broomrape emergence that explained 15–30% of the phenotypic
variability. This QTL was marked as the one that could be the
most rapidly used. A molecular characterization of O. cumana
populations in Europe using RAPD-PCR identified four groups
(Molinero-Ruiz et al., 2014). These markers might be useful as
molecular tools to detect first broomrape appearances in fields
that had been free of virulent races (Molinero-Ruiz et al., 2014).

Herbicide Tolerance
Different tolerances against herbicides inhibiting the large,
catalytic subunit of the acetohydroxyacid synthase (AHASL) have
become a very necessary tool in sunflower hybrid production
and cultivation as these facilitate the application of either
imidazolinones (IMIs) or sulfonylureas (SUs) against broadleaf
weeds (Sala et al., 2012). It also allows a race independent
control of broomrape (Skoric and Pacureanu, 2010). Three
AHASL genes were isolated from sunflower: AHASL1 located
on LG9, AHASL2 on LG6 and AHASL3 on LG2 (Kolkman
et al., 2004). Only mutations in AHASL1 seem to be involved

8https://cnrgv.toulouse.inra.fr/fr/Projets/Analyse-de-genome-pour-l-
amelioration-des-plantes/SUNRISE-SUNflower-Resources-to-Improve-yield-
Stability-in-a-changing-Environment
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in the herbicide tolerance in sunflower. Four different mutated
alleles have been explored for commercial use in sunflower
hybrid breeding: Imisun/Clearfield R©, Clearfield Plus R©, Sures and
ExpressSun R© (Sala et al., 2012). Point mutations from C-T in
codon 205 (Ahasl1-1) and in codon 197 (Ahasl1-2) (adopting
the Arabidopsis nomenclature) confer moderate tolerance to IMIs
and high tolerance to SUs, respectively. The allele Ahasl1-3 is
characterized by a G-A mutation in codon 122 and results in high
levels of IMI tolerance (Sala et al., 2008b). The broadest range of
herbicide tolerance is shown by allele Ahasl1-4, which has a G-T
mutation in codon 574 (Sala and Bulos, 2012). A first SNP marker
based on the C-T change in codon 205 proved to be very useful
as it cosegregated with partially dominant herbicide tolerance
for the Imisun/Clearfield R© system (Kolkman et al., 2004), even
though an additional non-target gene is required for the tolerance
(Bruniard and Miller, 2001; Miller and Al-Khatib, 2002). One SSR
marker exploiting the differences in the (ACC) repeats present
in the AHASL gene allows the differentiation between the wild
type Ahasl1 allele and alleles Ahasl1-1 and Ahasl1-2 (Sures and
ExpressSun R©) (Kolkman et al., 2004; Bulos et al., 2013b). A CAPS
marker developed by Bulos et al. (2013b) uses the A-T exchange
to detect the Ahasl1-3 allele (Clearfield Plus R©) by digesting the
PCR product with the restriction enzyme BmgBI. The markers
can now help to select for herbicide tolerance. Nevertheless, the
development of efficient screening tests for herbicide tolerance is
crucial (e.g., Breccia et al., 2011; Vega et al., 2012).

Seed Oil Quality
Several oil properties have been characterized as quantitative
traits, however, some traits such as oleic acid content (OAC)
could, to a certain extent, be considered a semi-qualitative trait
since OAC is dependent not only on the environment, but also
on the genetic background of the receiver line (Ferfuia et al.,
2015; Regitano Neto et al., 2016). A partial duplication of the
FAD2-1 allele caused by chemical mutation leads to an increase
in OAC by silencing the FAD2-1 gene encoding FAD2 (oleoyl-
phosphatidylcholine desaturase) (Lacombe et al., 2002; Schuppert
et al., 2006). This enzyme catalyzes the synthesis of linoleic
acid from oleic acid and by silencing its activity oleic acid is
accumulated. Soldatov (1976) created the Pervenets cultivar with
elevated OAC, which has become the main source of elevated
OAC in sunflower breeding programs worldwide due to the
beneficial properties of high oleic sunflower oil (Allman-Farinelli
et al., 2005; Vannozzi, 2006). Inheritance of the OAC trait has
been a subject of numerous studies and different results were
reported from a single dominant gene to several genes influencing
OAC (Urie, 1984; Lacombe et al., 2004; Joksimovic et al., 2006;
Bervillé, 2010; Ferfuia and Vannozzi, 2015; Premnath et al., 2016;
Dimitrijevic et al., 2017). Gene/genes involved in inheritance of
OAC have been denoted as Ol genes. Different markers were
employed in mapping and detecting the mutation (Ol mutation)
in sunflower. The two RAPD markers, F15-690 and AC10-765,
were linked with 7.0 and 7.2 cM to Ol1 gene, respectively (Dehmer
and Friedt, 1998). Later on, the Ol1-FAD2-1 locus was placed
onto LG14 (Pérez-Vich et al., 2002; Schuppert et al., 2006).
One major QTL identified by Pérez-Vich et al. (2002) explained
84.5% of the variation in the OAC. Schuppert et al. (2006)

provided dominant INDEL markers for tracking the Ol mutation
in addition to identifying 49 SNPs and five INDELs in the 3′-
region of FAD2-1. Three years later, a co-dominant SSR marker
tightly linked to the Ol mutation and dominant markers specific
for the mutation were published (Lacombe et al., 2009). Recently,
Premnath et al. (2016) identified in addition to the QTL on
LG14, two additional QTL for OAC on LG8 and LG9. The two
markers HO_Fsp_b for the QTL on LG14 (Schuppert et al., 2006)
and ORS762 for the QTL on LG8 explained about 60% of the
phenotypic variation in OAC. Several of the markers have been
used for validation across numerous sunflower lines (Nagarathna
et al., 2011; Singchai et al., 2013; Bilgen, 2016; Dimitrijevic et al.,
2016). Dimitrijevic et al. (2017) reported marker F4-R1 created
by Schuppert et al. (2006) as the most efficient in MAS for OAC.

Fertility Restoration
Development of reliable tools for detection of cytoplasmic
male sterility (cms) and restorer of fertility (Rf ) genes would
significantly improve and accelerate the process of developing
sunflower hybrids. In sunflower, CMS PET1 originating from
an interspecific hybridization of H. petiolaris with H. annuus
(Leclercq, 1969) is the only CMS cytoplasm worldwide used for
hybrid breeding. Male sterility is caused by the co-transcription
of the atpA gene with the new CMS-specific orfH522 leading to
the expression of a 16-kDa-protein (Horn et al., 1991; Köhler
et al., 1991). Fertility restoration suppresses the co-transcription
anther-specific (Monéger et al., 1994). In sunflower, the restorer
genes for the PET1 cytoplasm represent the best characterized
due to the commercial use of this cytoplasm in sunflower hybrid
breeding. The restorer gene Rf1, which was originally discovered
by Kinman (1970) in the line T66006-2-1-B, has since then
been integrated into a number of USDA/ARS RHA lines like
RHA 271, RHA 272, RHA 273, and others (Korell et al., 1992;
Serieys, 2005). A second major dominant restorer gene Rf2 was
discovered in a test cross between T66006-2-1-B and MZ01398.
However, this Rf2 gene seems to be ubiquitously present in almost
all cultivated sunflower lines, along with maintainer lines of CMS
PET1 (Serieys, 2005). Only Rf1 is responsible for restoring male
fertility in sunflower hybrids (Leclercq, 1984). RAPD markers in
combination with AFLP markers were very useful for mapping
of the restorer gene Rf1 (Horn et al., 2003), which was first
positioned on LG6 of the RFLP sunflower map (Gentzbittel et al.,
1995). Two RAPD markers OPK13_454 and OPY10_740, which
mapped 0.8 and 2.0 cM from Rf1, respectively, were converted
into more reliable, easier to handle SCAR markers HRG01 and
HRG02 (Horn et al., 2003). A recent study of these SCAR markers
for breeding practice proved that HRG01 is more efficient for Rf1
detection in perennial species, whereas HRG02 gave better results
for annual species (Markin et al., 2017). In addition a multiplex
TaqMan assay was established that allowed the detection of
HRG01 and orfH522 at the same time (Markin et al., 2017).
Using the SSR markers ORS1030, Rf1 had been mapped to LG13
(Kusterer et al., 2005) of the sunflower reference map (Tang
et al., 2003b). In addition, a CAPS marker H13, which mapped
7.7 cM from Rf1 gene, was developed from the RAPD marker
OPH13_337 by digesting the PCR product with Hinf I (Kusterer
et al., 2005). The tight linkage between CAPS H13 and Rf1 was
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confirmed in Xenia hybrid combination (Port et al., 2013). An
additional SSR marker ORS511 and a TRAP marker K11F05Sa12-
160 were mapped to the Rf1 gene with distances of 3.7 and 0.4 cM,
respectively (Yue et al., 2010). A fertility restorer gene Rf3, which
could be shown to be different from Rf1 and Rf2, was identified
in the confectionery restorer line RHA 280 (Jan and Vick, 2007).
Rf3 could be linked with eight markers to LG7, including five
known SSR markers (ORS328, ORS331, ORS928, ORS966, and
ORS1092) and three new SSR markers HT-619-1, HT619-2, and
HT1013 derived from expressed sequence tags (Liu et al., 2012b).
SSR ORS328, which mapped 0.7 cM distant from Rf3, represents
so far the closest co-dominant marker to the gene (Liu et al.,
2012b). Another restorer gene Rf3 in RHA 340 has also been
mapped to LG7 (Abratti et al., 2008). Rf ANN-1742, a restorer line
derived from wild H. annuus showed resistance to rust (Qi et al.,
2012b). The new rust resistance gene R11 mapped with 1.6 cM
closely to a restorer gene on the lower end of LG13. The SSR
marker ORS728 was mapped 1.3 cM proximal from this restorer
gene and 0.3 cM distal to R11. Marker analyses using HRG01,
HRG02, STS115, and ORS728 indicated that this restorer gene,
now called Rf5, might not be allelic to Rf1 (Qi et al., 2012b).

So far, 72 new CMS sources have been described for sunflower
(Serieys, 2005). However, only for very few of these CMS sources
markers have been detected linked to the corresponding restorer
genes (Horn et al., 2016). Feng and Jan (2008) tagged an
additional restorer gene Rf4 with molecular markers and assigned
it to LG3 of the sunflower general reference map (Tang et al.,
2003b). Rf4 is restoring male fertility to a newly identified CMS
cytoplasm GIG2. Schnabel et al. (2008) identified AFLP markers
that mapped in close vicinity of the restorer gene Rf_PEF1, which
represent a major restorer gene for the PEF1 CMS cytoplasm,
another potentially interesting CMS source for commercial
sunflower hybrid breeding. In addition, markers were developed
that allowed the distinction between the PET1 cytoplasm and
the PEF1 cytoplasm. For CMS 514A, a H. tuberosus based male
sterile cytoplasm, the restorer gene Rf6 was located on LG3 with
eight markers (Liu et al., 2013). Two SSR markers, ORS13 and
ORS1114, mapped as close as 1.6 cM to Rf6. GISH showed
Rf6 to be present on a small translocation introgressed from
H. angustifolius.

Further analyses are needed in order to develop more tightly
linked molecular markers to Rf genes to locate them on the
genetic map and to get an insight on the fertility restoration
mechanisms in sunflower. In other species, most of the so far
cloned restorer of fertility genes belong to the pentatricopeptide
repeat gene family (PPR), however, also other types of restorer
genes have been identified (Horn et al., 2014).

ASSOCIATION MAPPING

For association mapping two approaches have been explored:
(1) genome-wide association studies (GWAS) and (2) candidate
gene approaches. For most plant species, the last strategy was
predominantly applied because whole genome sequences have
only recently become available (Fusari et al., 2008). However,
high-throughput marker systems nowadays give full genome

coverage, which makes approaches as genome-wide association
mapping, QTLSeq mapping and genomic selection possible
(Mammadov et al., 2012). As the linkage disequilibrium (LD) in
sunflower rapidly decays (Liu and Burke, 2006; Kolkman et al.,
2007; Fusari et al., 2008) studies based on associations could result
in resolution levels detecting genes underlying quantitative trait
loci. However, it is important to analyze the population structure
of the association mapping population to avoid false associations.

In sunflower, only one of the association mapping studies so
far was performed genome-wide (Mandel et al., 2013), all others
were candidate gene based (Fusari et al., 2012; Cadic et al., 2013;
Talukder et al., 2014b; Nambeesan et al., 2015; McAssey et al.,
2016). Genome-wide association mapping was performed in an
association population of 271 lines (Mandel et al., 2011), using
5,359 SNP marker from the Illumina Infinium Beadchip (Mandel
et al., 2013). Associations were studied regarding flowering
time, branching and heterotic groups. LD showed considerable
variability across the genome, but significant marker-trait
associations were detected. Selection for disease resistance as well
as initial domestication might be responsible for the genome-
wide differences in the LD profile (Mandel et al., 2013). This
first screen was followed by a more detailed, refined association
mapping approach based on candidate genes for branching
(Nambeesan et al., 2015). Shoot branching was differentiated in
no branching, apical, mid-apical, mid, mid-basal, basal branching
as well as whole plant branching or other phenotype. A total
of 48 candidate genes described to be involved in branching in
other plant species were used to detect homologs to 39 genes in
sunflower. Up to eight of the highest BLAST hit for each gene
were included in the analyses due to the recent triplication of the
sunflower genome (Badouin et al., 2017). For 13 candidate genes
for branching co-localization of SNPs associated with branching
was observed (Nambeesan et al., 2015). Most of these were found
on LG10, where previous QTL mapping had detected the B-Locus
for recessive branching (Tang et al., 2006; Bachlava et al., 2009).
With regard to flowering time, a SNP in HaFT2 was identified that
co-localized with a flowering time QTL (McAssey et al., 2016).

Association mapping and linkage mapping were combined
with QTL detection to identify mutations responsible for changes
in flowering time (Cadic et al., 2013). Associations with flowering
time could be demonstrated for 11 regions distributed over 10
LGs. In addition, QTL for flowering time were detected on 11
LGs in a RIL population by linkage mapping. This large number
of QTL is consistent with the polygenic pattern of inheritance of
flowering time reported before (Leon et al., 2000). SNPs detected
by association mapping were then investigated with regard to
positional overlaps with QTL identified in the RIL population.
The remaining eight regions contained five candidate genes
potentially associated with flowering time in other species that
showed SNPs in sunflower, one of the genes was the gibberellin
receptor GID1B (Cadic et al., 2013). Thirty genes, including
this gene had before been investigated as candidate genes for
flowering time with regard to domestication and improvement
in sunflower (Blackman et al., 2011). One major QTL, which
was detected on LG14 by linkage mapping (Poormohammad
Kiani et al., 2009), was not detected by the association study
(Cadic et al., 2013). This can happen if alleles are present in
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a low frequency in an association panel as one disadvantage
of association mapping is that rare alleles are difficult to be
associated with traits.

Sclerotinia sclerotiorum, a necrotrophic, fungal pathogen, is
one of the most devastating diseases in sunflower. The fungus
can cause three different types of diseases depending on which
part of the plants gets infected and whether the infection occurs
via ascospores or mycelia (Gulya et al., 1997). These are stalk
rot, mid-stalk rot and head rot. In a panel consisting of 94
sunflower lines 16 candidate genes were screened for associations
to Sclerotinia head rot using a Mixed Linear Model (MLM)
that also considers family relationship as well as population
structure (Fusari et al., 2012). These candidate genes had been
derived from previous transcript profiling in sunflower (Peluffo,
2010) and Brassica (Zhao et al., 2007) after infecting the plants
with S. sclerotiorum. Significant association of the haplotype
3 of the gene HaRIC_B, representing a truncated gene, was
detected and accounted for 20% reduction in Sclerotinia head
rot. Candidate gene association mapping for Sclerotinia stalk rot
was also performed in another association panel of 260 cultivated
sunflower lines (Talukder et al., 2014b). Eight genes, which had
been identified in defense response against S. sclerotiorum in
Arabidopsis (Guimaraes and Stotz, 2004; Guo and Stotz, 2007),
served as basis to identify the orthologous genes in sunflower.
The panel was divided in two groups representing either the
best resistance response or the most susceptible lines. Association
studies found strong association of HaCOI1-1 and HaCOI1-2
with resistance against Sclerotinia stalk rot, explaining 7.4% of the
observed phenotypic variation (Talukder et al., 2014b).

Association mapping studies in the recent years have shown
that this approach represents an interesting alternative to linkage
mapping especially regarding quantitative inherited traits.

TOWARD GENOMIC SELECTION

Genomic selection (GS) is so far mostly used in animals, e.g.,
dairy cattle (Van Raden et al., 2009). However, application of
genomic selection got started as well in plant breeding, e.g.,
in maize (Massman et al., 2013; Bandeira e Sousa et al., 2017;
Cantelmo et al., 2017; Lyra et al., 2017), potato (Habyarimana
et al., 2017), soybean (de Azevedo Peixoto et al., 2017), sugar beet
(Würschum et al., 2013), and wheat (Bassi et al., 2016). Genomic
selection was regarded as promising in hybrid breeding of self-
pollinating crops as wheat (Longin and Reif, 2014; Zhao et al.,
2015), especially if little is known about the heterotic pools. To
implement GS into sunflower breeding programs some general
aspects of genomic selection need to be emphasized.

Genomic selection selects the individuals based on genomic
breeding values (GEBVs) (Meuwissen et al., 2001). The idea of
GS is to use genome-wide molecular data to effectively select
for quantitative trait loci (Bernardo, 2008; Massman et al.,
2013; Würschum et al., 2013). More than 10,000 QTL have
been detected by traditional mapping approaches considering
12 major crop species, but only very few have been successfully
applied in marker-assisted breeding programs (Bernardo, 2008).
Genomic selection is a concept that becomes more attractive

as high-throughput genotyping becomes feasible due to recent
advances in genotyping platforms and to considerable price
reductions in the last few years. As first step in GS, a
training population has to be established that is genotyped
and phenotyped. This training population is needed to adjust
the statistical models, which are then applied to predict
breeding and genotypic values of individuals that have not
been phenotyped (Bassi et al., 2016). The breeding population
consists of these not phenotyped individuals that are only
genotyped. Selection is performed in the breeding population.
Finally, a validation population serves to estimate the accuracy
of the GS models (Bassi et al., 2016). Comparing traditional
MAS and GS, three major differences are obvious: (1) within
the training phase markers linked with a gene of interest
and quantitative traits are identified in MAS, whereas in GS
models are developed to predict GEBVs, (2) in the breeding
phase only few markers are used in traditional MAS for
genotyping, whereas in the GS genome-wide genome data
are collected and (3) regarding the selection in the breeding
phase traditional MAS uses only the identified markers to
select the individuals by genotype, whereas selection in GS
is performed based on the GEBV (Nakaya and Isobe, 2012).
For the success of GS, the accuracy of the prediction of
GEBV is the most important factor. The accuracy of prediction
relies on the characteristics of the training population as size,
marker density, trait heritability and kinship between training
and breeding population as well as the ratio of training
population : breeding population (Nakaya and Isobe, 2012; Bassi
et al., 2016). In traditional MAS, markers tightly linked to a
QTL could be applied in most other breeding population, so
that the relationship between the mapping and the breeding
population had not to be considered by the breeder. However,
in GS the interrelationship between training and breeding
population is crucial for the predictive power (Nakaya and Isobe,
2012).

In sunflower, prediction of hybrid performance was based
on fingerprinting data in form of 572 AFLP markers (Reif
et al., 2013). Intragroup (133) and intergroup hybrids and the
parental lines were evaluated at two locations in 2 years for
grain yield, oil content and oil yield. If no information on
the General Combining Ability (GCA) of the parental lines
was accessible, prediction of hybrid performance using genomic
selection methods was accurate if the parents were closely
related, but with genetically distant lines prediction proved
challenging (Reif et al., 2013). However, prediction based on
GCA could not be improved by genomic selection. In the
recent years, large sets of markers were generated in sunflower
by genotyping-by-sequencing (Baute et al., 2016; Celik et al.,
2016; Talukder et al., 2016; Ma et al., 2017; Qi et al., 2017),
application of the new 25 K SNP genotyping array (Livaja
et al., 2016) and sequencing of parental lines (Mangin et al.,
2017a). However, so far only SNP array data were used for
genomic prediction of Sclerotinia resistance (Livaja et al., 2016)
and sequencing data for the genomic prediction of sunflower
hybrid oil content (Bonnafous et al., 2016; Mangin et al., 2017a).
In the latter case, an incomplete factorial design consisting
of 36 CMS lines and 36 restorer lines was used to compare
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prediction accuracy of GS and classical GCA modeling in
sunflower. Multi-environmental field trials were performed to
characterize 452 sunflower hybrids of the panel with regard to
hybrid performance in oil content, which represents a primarily
additive trait with high heritability. In addition, all 72 parental
lines were sequenced to obtain genome-wide SNP markers
(Mangin et al., 2017a). Genomic predictions were then made for
missing hybrids and hybrid combinations lacking information
about at least one parental line. In conclusion, GS led to
considerable improvement in breeding efficiency compared to
the conventional GCA modeling if little is known about one
or both parental lines (Mangin et al., 2017a). For Sclerotinia
midstalk rot, the prediction ability of a genome-based best
linear unbiased prediction (GBLUB) model was evaluated in
a biparental population genotyped with the 25 K SNP array
(Livaja et al., 2016). High predictive abilities were obtained
for “stem lesion length” and lower predictive abilities for “leaf
lesion length” and “speed of fungal growth,” which represent
traits with lower heritabilities. These first experimental trials for
genomic predictions, using and comparing the results of different
models, have shown the potential and the limitations for genomic
selection in sunflower.

FUTURE PERSPECTIVES

In this review the emphasis was given to plant genetic resources
and molecular tools used to detect and exploit genetic diversity
and to facilitate sunflower hybrid breeding. Traditional MAS
has been successfully used to introduce monogenic traits into
the breeding material, especially disease resistance as well as
herbicide tolerance. Validation of identified molecular markers
across different genotypes has also shown the limitation in
markers to be used in different genetic backgrounds. However,
sunflower researchers have put a lot of effort in the identification
of markers linked to specific traits without gaining insight
into the function of the involved genes, even though this
would allow a better understanding of the metabolism and
mechanisms behind traits. Breeding for complex polygenic
traits is still challenging. With this regard, it is necessary
to stress the importance of precise phenotypic evaluation,
on which molecular biologists rely to correctly interpret the
molecular and phenotypic data. High-throughput phenotyping
as applied and tested in other crops would be also interesting
for sunflower (Sankaran et al., 2015). There has been a first
report on testing remote sensing on sunflower and maize in
China with regard to future applications (Yu and Shang, 2017).
In recent years, high throughput genotyping platforms, e.g.,
SNP arrays, GBS and whole genome sequencing have been
established and successfully used in sunflower (Livaja et al.,
2016; Qi L. et al., 2016; Talukder et al., 2016). GWAS (genome
wide association study) and GS (genomic selection) using
large amounts of markers across a wide range of genotypes
provided by these techniques open up new possibilities to
address complex traits in sunflower. However, GWAS is still
expensive and unavailable for many researchers and breeders.
Some initial steps have been made in order to create the

most appropriate models for prediction of hybrid performance
based on GWAS and GS data (Bonnafous et al., 2016; Mangin
et al., 2017a), yet there is still a need for further improvement
of prediction models, which mostly take additive effects into
account, whereas for heterosis also dominance and epistasis
play an important role. As in conventional breeding, species-
specific strategies will have to be developed for GS taking
into account reproduction system, generation time, genome
structure, harvested organs and breeding purposes (Nakaya and
Isobe, 2012). However, first empirical GS studies in plants
showed the potential for GS also in plant breeding. It could
be demonstrated that the correct choice of population allows
successful performance of GS even with lower numbers of
markers and reasonable sizes of populations (Nakaya and Isobe,
2012).

Access to the recently published sunflower genome sequence
(Badouin et al., 2017) should allow researchers and breeders
to make sunflower breeding more efficient in the coming
years. However, exploring the sunflower genome on its own
is not enough. Extensive transcriptomics, proteomics and
metabolomics data are required as only the combination of
all Omics data will enable us to get to the bottom of some
important physiological and molecular mechanisms unique to
sunflower. This is especially important for quantitative traits
such as drought tolerance or biotic stress resistance (e.g., against
Sclerotinia, Phoma, Phomopsis). First results in this direction have
been published. Transcriptional profiling has been done with
regard to disease reactions of resistant and sensitive genotypes
to pathogens as S. sclerotiorum (Muellenborn et al., 2011),
Plasmopara halstedii (Livaja et al., 2013) and Verticillium dahliae
(Guo et al., 2017). Identification of the differentially expressed
genes now allows a better understanding of the mechanisms
behind pathogen attacks and plant reactions. This knowledge
will be helpful with regard to developing resistant cultivars.
Earlier metabolome data of head rot between genotypes with
different reactions to S. sclerotiorum also gave an indication to
63 metabolites involved in the attack of the pathogen (Peluffo
et al., 2010). To analyze the response of sunflower to drought
transcriptome analyses of sunflower genotypes under water-
limited conditions in comparison to well-water plants have been
performed by RNASeq or microarray analyses (Liang et al.,
2017; Moschen et al., 2017; Sarazin et al., 2017). Combination
of the transcriptomic and metabolic data made the identification
of drought relevant hubs for transcription possible (Moschen
et al., 2017). Leaf senescence is a naturally occurring process,
but the onset and progress of senescence plays a major role
for yield. Integration of transcriptomic and metabolomics data
identified metabolites and transcription factors as applicable
biomarkers (Moschen et al., 2016a,b). To explore the potential
of other species in the genus Helianthus for sunflower breeding,
transcriptomics have also been performed to address populations
of, e.g., perennial sunflowers as H. maximiliani (Kawakami
et al., 2014) and H. tuberosus (Jung et al., 2014) as well as
interspecific hybrids of annuals in the first generation (Rowe
and Rieseberg, 2013). Proteomic analyses in sunflower have been
performed with regard to drought stress (Castillejo et al., 2008;
Fulda et al., 2011; Ghaffari et al., 2013, 2017), cold acclimation
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(Balbuena et al., 2011), response to metal-ion contamination
(Garcia et al., 2006; Printz et al., 2013; Lopes Júnior et al.,
2015), seed protein composition (De Sousa Barbosa et al., 2013),
heterosis performance (Mohayeji et al., 2014), and resistance
to O. cumana (Yang et al., 2017). In addition, the sunflower
genome database represents a very valuable tool, which allows
access to a wide range of transcriptome data, which have
already been successfully used to address flowering time and
oil metabolism (Badouin et al., 2017). However, further studies
in sunflower are still needed in order to analyze in detail
responses to different abiotic and biotic stress conditions and
to prepare sunflower for future climatic challenges. Combining
Omics data will allow system biology approaches to improve
sunflower hybrids. Another aspect is the optimization of plant
architecture to a more compact form, which would have an
influence on photosynthesis, lodging, climatic adaptation and
possible plant densities. This could also improve sunflower
hybrid performance and increase yields per hectare by use of
higher plant densities (Hall et al., 2010). Picheny et al. (2017)
used the crop model SUNFLO to design sunflower ideotypes
with optimized morphological and physiological traits for certain
environments.

However, only a combined effort of the sunflower research
community can make sunflower more competitive to other oil

crops. The new high-throughput technologies combined with
new genomic-based breeding strategies give us the opportunity,
as never before, to understand and mine genetic variation and to
use it for improvement of sunflower hybrids.
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