Kundu, Sayanta

Link to this page

Authority KeyName Variants
81a5b909-c0d7-43c5-a87f-dc5b327c3364
  • Kundu, Sayanta (1)
Projects

Author's Bibliography

Maize and heat stress: Physiological, genetic, and molecular insights

Đalović, Ivica; Kundu, Sayanta; Bahuguna, Rajeev Nayan; Pareek, Ashwani; Raza, Ali; Singla-Pareek, Sneh L.; Prasad, Vara P.V.; Varshney, Rajeev K.

(Wiley, 2023)

TY  - JOUR
AU  - Đalović, Ivica
AU  - Kundu, Sayanta
AU  - Bahuguna, Rajeev Nayan
AU  - Pareek, Ashwani
AU  - Raza, Ali
AU  - Singla-Pareek, Sneh L.
AU  - Prasad, Vara P.V.
AU  - Varshney, Rajeev K.
PY  - 2023
UR  - http://fiver.ifvcns.rs/handle/123456789/3736
AB  - Global mean temperature is increasing at a rapid pace due to the rapid emission of greenhouse gases majorly from anthropogenic practices and predicted to rise up to 1.5˚C above the pre-industrial level by the year 2050. The warming climate is affecting global crop production by altering biochemical, physiological, and metabolic processes resulting in poor growth, development, and reduced yield. Maize is susceptible to heat stress, particularly at the reproductive and early grain filling stages. Interestingly, heat stress impact on crops is closely regulated by associated environmental covariables such as humidity, vapor pressure deficit, soil moisture content, and solar radiation. Therefore, heat stress tolerance is considered as a complex trait, which requires multiple levels of regulations in plants. Exploring genetic diversity from landraces and wild accessions of maize is a promising approach to identify novel donors, traits, quantitative trait loci (QTLs), and genes, which can be introgressed into the elite cultivars. Indeed, genome wide association studies (GWAS) for mining of potential QTL(s) and dominant gene(s) is a major route of crop improvement. Conversely, mutation breeding is being utilized for generating variation in existing populations with narrow genetic background. Besides breeding approaches, augmented production of heat shock factors (HSFs) and heat shock proteins (HSPs) have been reported in transgenic maize to provide heat stress tolerance. Recent advancements in molecular techniques including clustered regularly interspaced short palindromic repeats (CRISPR) would expedite the process for developing thermotolerant maize genotypes.
PB  - Wiley
T2  - The Plant Genome
T1  - Maize and heat stress: Physiological, genetic, and molecular insights
SP  - e20378
DO  - 10.1002/tpg2.20378
ER  - 
@article{
author = "Đalović, Ivica and Kundu, Sayanta and Bahuguna, Rajeev Nayan and Pareek, Ashwani and Raza, Ali and Singla-Pareek, Sneh L. and Prasad, Vara P.V. and Varshney, Rajeev K.",
year = "2023",
abstract = "Global mean temperature is increasing at a rapid pace due to the rapid emission of greenhouse gases majorly from anthropogenic practices and predicted to rise up to 1.5˚C above the pre-industrial level by the year 2050. The warming climate is affecting global crop production by altering biochemical, physiological, and metabolic processes resulting in poor growth, development, and reduced yield. Maize is susceptible to heat stress, particularly at the reproductive and early grain filling stages. Interestingly, heat stress impact on crops is closely regulated by associated environmental covariables such as humidity, vapor pressure deficit, soil moisture content, and solar radiation. Therefore, heat stress tolerance is considered as a complex trait, which requires multiple levels of regulations in plants. Exploring genetic diversity from landraces and wild accessions of maize is a promising approach to identify novel donors, traits, quantitative trait loci (QTLs), and genes, which can be introgressed into the elite cultivars. Indeed, genome wide association studies (GWAS) for mining of potential QTL(s) and dominant gene(s) is a major route of crop improvement. Conversely, mutation breeding is being utilized for generating variation in existing populations with narrow genetic background. Besides breeding approaches, augmented production of heat shock factors (HSFs) and heat shock proteins (HSPs) have been reported in transgenic maize to provide heat stress tolerance. Recent advancements in molecular techniques including clustered regularly interspaced short palindromic repeats (CRISPR) would expedite the process for developing thermotolerant maize genotypes.",
publisher = "Wiley",
journal = "The Plant Genome",
title = "Maize and heat stress: Physiological, genetic, and molecular insights",
pages = "e20378",
doi = "10.1002/tpg2.20378"
}
Đalović, I., Kundu, S., Bahuguna, R. N., Pareek, A., Raza, A., Singla-Pareek, S. L., Prasad, V. P.V.,& Varshney, R. K.. (2023). Maize and heat stress: Physiological, genetic, and molecular insights. in The Plant Genome
Wiley., e20378.
https://doi.org/10.1002/tpg2.20378
Đalović I, Kundu S, Bahuguna RN, Pareek A, Raza A, Singla-Pareek SL, Prasad VP, Varshney RK. Maize and heat stress: Physiological, genetic, and molecular insights. in The Plant Genome. 2023;:e20378.
doi:10.1002/tpg2.20378 .
Đalović, Ivica, Kundu, Sayanta, Bahuguna, Rajeev Nayan, Pareek, Ashwani, Raza, Ali, Singla-Pareek, Sneh L., Prasad, Vara P.V., Varshney, Rajeev K., "Maize and heat stress: Physiological, genetic, and molecular insights" in The Plant Genome (2023):e20378,
https://doi.org/10.1002/tpg2.20378 . .
6
11
8